py_layer_node.cc 6.2 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/pylayer/py_layer_node.h"
#include "paddle/fluid/eager/eager_tensor.h"

#include "paddle/phi/api/all.h"
#include "paddle/phi/core/dense_tensor.h"

#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"

#include "glog/logging.h"
#pragma GCC diagnostic ignored "-Wattributes"
#include "pybind11/pytypes.h"

namespace egr {
std::vector<std::vector<paddle::experimental::Tensor>> GradNodePyLayer::
operator()(
    std::vector<std::vector<paddle::experimental::Tensor>>& grads,  // NOLINT
35
    bool create_graph, bool is_new_grad) {
W
wanghuancoder 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  VLOG(3) << "Running Eager Backward Node: " << name();

  std::vector<std::vector<paddle::experimental::Tensor>> hooked_grads =
      GradNodePyLayer::ApplyGradientHooks(grads);

  paddle::pybind::PyLayerObject* ctx =
      reinterpret_cast<paddle::pybind::PyLayerObject*>(ctx_);

  PADDLE_ENFORCE_EQ(ctx->forward_output_tensor_is_duplicable.size(),
                    grads.size(),
                    paddle::platform::errors::InvalidArgument(
                        "%s's grad input size(%s) mast be equal with it's "
                        "forward's output size(%s).",
                        name(), grads.size(),
                        ctx->forward_output_tensor_is_duplicable.size()));

  auto backward_args = PyTuple_New(grads.size());
  for (size_t i = 0; i < grads.size(); i++) {
    if (ctx->forward_output_tensor_is_duplicable[i]) {
      PyObject* pylist = PyList_New((Py_ssize_t)grads[i].size());
      for (size_t j = 0; j < grads[i].size(); j++) {
        if (ctx->materialize_grads && !grads[i][j].initialized()) {
          paddle::experimental::Tensor tensor_tmp;
          auto dense_tensor = std::make_shared<phi::DenseTensor>();
          dense_tensor->set_meta(forward_outputs_meta_[i][j]);
          tensor_tmp.set_impl(dense_tensor);
          PyList_SET_ITEM(
              pylist, static_cast<Py_ssize_t>(i),
              paddle::pybind::ToPyObject(paddle::experimental::zeros_like(
                  tensor_tmp, tensor_tmp.dtype(),
                  forward_outputs_place_[i][j])));
        } else {
          PyList_SET_ITEM(pylist, static_cast<Py_ssize_t>(i),
                          paddle::pybind::ToPyObject(grads[i][0], true));
        }
      }
      PyTuple_SET_ITEM(backward_args, i, pylist);
    } else {
      if (ctx->materialize_grads && !grads[i][0].initialized()) {
        paddle::experimental::Tensor tensor_tmp;
        auto dense_tensor = std::make_shared<phi::DenseTensor>();
        dense_tensor->set_meta(forward_outputs_meta_[i][0]);
        tensor_tmp.set_impl(dense_tensor);
        PyTuple_SET_ITEM(
            backward_args, i,
            paddle::pybind::ToPyObject(paddle::experimental::zeros_like(
                tensor_tmp, tensor_tmp.dtype(), forward_outputs_place_[i][0])));
      } else {
        PyTuple_SET_ITEM(backward_args, i,
                         paddle::pybind::ToPyObject(grads[i][0], true));
      }
    }
  }

  VLOG(6) << "PyLayer backward args is ready, begin call user's backward "
             "function...";

  auto backward_fn =
      PyObject_GetAttrString(reinterpret_cast<PyObject*>(ctx), "backward");
  if (!backward_fn) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Get backward function faild."));
  }
  auto outputs = PyObject_CallObject(backward_fn, backward_args);
  if (!outputs) {
    PADDLE_THROW(paddle::platform::errors::External(
        pybind11::detail::error_string().c_str()));
  }

  outputs_ = outputs;

  VLOG(6) << "PyLayer backward function finish...";

  PyObject* outputs_tuple = nullptr;
  if (PyTuple_Check(outputs)) {
    outputs_tuple = outputs;
  } else {
    outputs_tuple = PyTuple_New(1);
    Py_INCREF(outputs);
    PyTuple_SET_ITEM(outputs_tuple, 0, outputs);
  }

  size_t outputs_size = PyTuple_GET_SIZE(outputs_tuple);

  if (outputs_size > ctx->forward_input_tensor_is_duplicable.size()) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The number of outputs of `PyLayer.backward` should be %d, but "
        "received %d.",
        ctx->forward_input_tensor_is_duplicable.size(), outputs_size));
  }

  std::vector<std::vector<paddle::experimental::Tensor>> grad_out;
  grad_out.reserve(ctx->forward_input_tensor_is_duplicable.size());
  for (size_t i = 0; i < ctx->forward_input_tensor_is_duplicable.size(); i++) {
    if (i < outputs_size) {
      PyObject* obj = PyTuple_GET_ITEM(outputs_tuple, i);
      if (this->OutputMeta()[i][0].IsStopGradient()) {
        PADDLE_ENFORCE_EQ(
            obj, Py_None,
            paddle::platform::errors::InvalidArgument(
                "%s's backward function should return None at %d position, "
                "because it's forward Tensor's stopgradient is true.",
                name(), i));
        grad_out.push_back({});
      } else {
        if (ctx->forward_input_tensor_is_duplicable[i]) {
          grad_out.push_back(paddle::pybind::GetTensorListFromPyObject(obj));
        } else {
          grad_out.push_back({paddle::pybind::GetTensorFromPyObject(obj)});
        }
      }
    } else {
      PADDLE_ENFORCE_EQ(
          this->OutputMeta()[i][0].IsStopGradient(), true,
          paddle::platform::errors::InvalidArgument(
              "%s's backward function should not return empyt at %d position.",
              name(), i));
      grad_out.push_back({});
    }
  }

157 158 159 160 161 162
  Py_XDECREF(backward_fn);
  Py_XDECREF(backward_args);
  if (!PyTuple_Check(outputs)) {
    Py_XDECREF(outputs_tuple);
  }

W
wanghuancoder 已提交
163 164 165
  return grad_out;
}
}  // namespace egr