grpc_serde.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_NCCL
16 17
#include <nccl.h>
#endif
G
gongweibao 已提交
18
#include <limits>
G
gongweibao 已提交
19
#include <memory>
W
wanghuancoder 已提交
20 21
#include "grpcpp/impl/codegen/byte_buffer.h"
#include "grpcpp/impl/codegen/slice.h"
W
Wu Yi 已提交
22 23
#include "paddle/fluid/operators/distributed/grpc/grpc_serde.h"
#include "paddle/fluid/operators/distributed/grpc/grpc_variable_response.h"
24
#include "paddle/fluid/operators/distributed/proto_encoder_helper.h"
W
wanghuancoder 已提交
25
#include "paddle/fluid/operators/distributed/send_recv.pb.h"
26
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
W
wanghuancoder 已提交
27
#include "paddle/fluid/platform/enforce.h"
28 29
#include "paddle/fluid/platform/profiler.h"

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class Scope;
class Variable;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

40 41 42 43 44 45
namespace paddle {
namespace operators {
namespace distributed {

void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
W
Wu Yi 已提交
46
                           ::grpc::ByteBuffer* msg, const std::string& out_name,
Q
Qiao Longfei 已提交
47 48
                           const int trainer_id,
                           const std::string& table_name) {
49
  platform::RecordRPCEvent record_event("serial");
50
  VarMsg request;
Y
Yu Yang 已提交
51
  TensorPayload* payload = nullptr;
52 53

  request.set_varname(name);
W
Wu Yi 已提交
54
  request.set_trainer_id(trainer_id);
55 56 57 58 59 60 61 62 63 64 65 66 67 68
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
  if (platform::ShouldSendProfileState()) {
    if (platform::IsProfileEnabled()) {
      request.set_profile(platform::kEnableProfiler);
    } else {
      request.set_profile(platform::kDisableProfiler);
    }
  }
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
  }
Q
Qiao Longfei 已提交
69 70 71
  if (!table_name.empty()) {
    request.set_table_name(table_name);
  }
72 73
  if (var->IsType<framework::LoDTensor>()) {
    request.set_type(::sendrecv::LOD_TENSOR);
Y
Yu Yang 已提交
74
    payload = new TensorPayload(GetTensorPayload(var, ctx, &request));
75 76
  } else if (var->IsType<framework::SelectedRows>()) {
    request.set_type(::sendrecv::SELECTED_ROWS);
Y
Yu Yang 已提交
77
    payload = new TensorPayload(GetSelectedRowsPayload(var, ctx, &request));
78
#ifdef PADDLE_WITH_NCCL
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  } else if (var->IsType<ncclUniqueId>()) {
    request.set_type(::sendrecv::NCCL_ID);
#endif
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
  }
  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
94
#ifdef PADDLE_WITH_NCCL
95 96 97 98 99 100 101 102 103 104 105 106 107 108
  if (var->IsType<ncclUniqueId>()) {
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
    const ncclUniqueId& uid = var->Get<ncclUniqueId>();
    e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));

    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }
#endif
Y
Yu Yang 已提交
109 110
  PADDLE_ENFORCE_NOT_NULL(payload);
  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
Y
Yu Yang 已提交
111
                            payload->memory_size());
G
gongweibao 已提交
112
  if (payload->memory_size() >= std::numeric_limits<int>::max()) {
113 114 115
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable %s length %d should less than %d.", name,
        payload->memory_size(), std::numeric_limits<int>::max()));
G
gongweibao 已提交
116
  }
117 118 119 120 121
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
Y
Yu Yang 已提交
122 123 124 125
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload->ptr(), payload->memory_size(),
                                    SerializeDestroyCallback, payload),
      ::grpc::Slice::STEAL_REF);
126 127 128 129

  if (var->IsType<framework::SelectedRows>()) {
    auto* slr = var->GetMutable<framework::SelectedRows>();
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
G
gongweibao 已提交
130 131

    PADDLE_ENFORCE(VectorElemName(slr->rows()) == typeid(int64_t).name());
Y
Yu Yang 已提交
132
    size_t rows_memory_size = slr->rows().size() * sizeof(int64_t);
G
gongweibao 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size, [](void* backing) {},
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }
  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
                               const framework::Scope* scope,
W
Wu Yi 已提交
155
                               framework::Variable** var, int* trainer_id) {
156
  platform::RecordRPCEvent record_event("deserial");
157 158 159
  operators::distributed::GRPCVariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
  *var = resp.GetVar();
W
Wu Yi 已提交
160
  *trainer_id = resp.GetTrainerId();
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175
void DeserializeRecvFromByteBuffer(const ::grpc::ByteBuffer& msg,
                                   const platform::DeviceContext& ctx,
                                   const framework::Scope* scope,
                                   framework::Variable** var, int* trainer_id) {
  platform::RecordRPCEvent record_event("deserial");
  operators::distributed::GRPCVariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE_EQ(
      resp.Parse(msg), 0,
      platform::errors::InvalidArgument("parse bytebuffer to tensor error!"));
  *var = resp.GetRecvVar();
  *trainer_id = resp.GetTrainerId();
}

176 177 178
}  // namespace distributed
}  // namespace operators
}  // namespace paddle