tensor.py 14.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33 34 35
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
Y
Yu Yang 已提交
40
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
41 42
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
43 44


45 46
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
47
                     name=None,
48 49 50 51
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
52 53 54 55 56 57 58 59 60 61 62 63
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

    >>> import paddle.fluid as fluid
    >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
    >>> data = fluid.layers.data(name="img", shape=[64, 784],
    >>>           append_batch_size=False)
    >>> hidden = fluid.layers.matmul(x=data, y=W)

64 65 66 67 68 69 70 71 72 73 74
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
75
        the created parameter
76
    """
Q
Qiao Longfei 已提交
77
    helper = LayerHelper("create_parameter", **locals())
78
    if attr is None:
X
xuwei06 已提交
79
        attr = ParamAttr(name=name)
80 81 82 83
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
    Create a global variable. such as global_step
    Args:
        shape(list[int]): shape of the variable
        value(float): the value of the variable
        dtype(string): element type of the parameter
        persistable(bool): if this variable is persistable
        force_cpu(bool): force this variable to be on CPU

    Returns:
        Variable: the created Variable
    """
Q
Qiao Longfei 已提交
102 103 104 105
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
106 107
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
108 109 110
    return var


111
def cast(x, dtype):
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


127
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
128
    """
129 130 131
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
132
    and returns that as the output.
133 134 135 136

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
137 138
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
139 140 141 142 143 144 145

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155 156
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


157
def sums(input, out=None):
K
kavyasrinet 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
177 178
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
179
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
180 181 182 183 184 185 186 187
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


188
def assign(input, output):
189 190 191 192 193 194
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
195
        input(Variable|numpy.ndarray): The source variable
196 197 198 199 200 201 202 203 204 205 206
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
207
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
208 209
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
210
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
211 212
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
213
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
214
            value_name = "fp32_values"
215
            values = [float(v) for v in input.flat]
216
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
217
            value_name = "int32_values"
218
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
219 220
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
221 222 223
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
224 225 226 227 228 229 230

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
231
                value_name: values
X
xuwei06 已提交
232 233 234 235
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
236 237 238
    return output


Q
QI JUN 已提交
239
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
240
    """
241 242
    **fill_constant**

243 244
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
245

246
    The attribute `stop_gradient` of the created tensor is set to True.
247 248

    Args:
249
        shape(tuple|list|None): Shape of the output tensor.
250
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
251 252
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
253
        force_cpu(True|False): data should be on CPU if set true.
254 255

    Returns:
256
        Variable: The tensor variable storing the output.
257 258 259 260 261

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
262
    """
263

Y
Yu Yang 已提交
264 265 266 267 268 269 270
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
271 272 273 274
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
275
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
276
        })
Y
Yu Yang 已提交
277 278 279 280
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
281
@templatedoc()
Y
Yu Yang 已提交
282 283 284 285 286
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
287
                                  output_dim_idx=0):
288
    """
Y
yuyang18 已提交
289
    ${comment}
290 291 292

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
293 294 295
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

296
    Args:
Y
yuyang18 已提交
297
        input(${input_type}): ${input_comment}.
298

Y
yuyang18 已提交
299
        shape(${shape_type}): ${shape_comment}.
300

Y
yuyang18 已提交
301 302 303
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
304

Y
yuyang18 已提交
305 306 307 308 309
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
310
        ${out_comment}.
311
    """
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yang Yu 已提交
329
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
330
    """
331 332 333 334 335 336 337 338 339
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
340
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
341 342 343 344 345 346 347 348

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
349 350 351 352
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
353
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
354
    """
355 356 357 358 359 360 361 362 363
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
364
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
365 366 367 368 369 370 371 372

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
373 374
    """
    return fill_constant(value=0.0, **locals())
375 376


F
fengjiayi 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
        x(list): A list of Tensor/LoDTensor to be saved together in a single file.
        file_path(str): The file path where variables will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})