top_k_v2_op.cc 6.7 KB
Newer Older
W
wawltor 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/top_k_v2_op.h"
#include <memory>

namespace paddle {
namespace operators {

class TopkV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of TopkOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of TopkOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Indices"),
                   "Output(Indices) of TopkOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    const int& dim_size = input_dims.size();
    const int k = static_cast<int>(ctx->Attrs().Get<int>("k"));
    int axis = static_cast<int>(ctx->Attrs().Get<int>("axis"));
    PADDLE_ENFORCE_EQ((axis < dim_size) && (axis >= (-1 * dim_size)), true,
                      "the axis of topk"
                      "must be [-%d, %d), but you set axis is %d",
                      dim_size, dim_size, axis);

    if (axis < 0) axis += dim_size;

    PADDLE_ENFORCE_GE(
        k, 1, "the attribute of k in the topk must >= 1, but received %d .", k);
    PADDLE_ENFORCE_GE(input_dims.size(), 1,
                      "input of topk must have >= 1d shape");

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GE(
          input_dims[axis], k,
          "input of topk op must have >= %d columns in axis of %d", k, axis);
    }

    framework::DDim dims = input_dims;

    dims[axis] = k;
    ctx->SetOutputDim("Out", dims);
    ctx->SetOutputDim("Indices", dims);
    ctx->ShareLoD("X", "Out");
    ctx->ShareLoD("X", "Indices");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context(),
        layout_, library_);
  }
};

class TopkV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) The input of Topk op");
    AddInput("K",
             "(Tensor)  Number of top elements to look for along "
             "the last dimension (along each row for matrices).")
        .AsDispensable();
    AddOutput("Out", "(Tensor) The output tensor of Topk op");
    AddOutput("Indices", "(Tensor) The indices of Topk elements of input");
    AddComment(R"DOC(
Top K operator

If the input is a vector (1d tensor), this operator finds the k largest 
entries in the vector and outputs their values and indices as vectors. 
Thus values[j] is the j-th largest entry in input, and its index is indices[j].

For matrices, this operator computes the top k entries in each row. )DOC");
    AddAttr<int>("k",
                 "(int, default 1) Number of top elements to look for along "
                 "the tensor).")
        .SetDefault(1);
    AddAttr<int>("axis",
                 "the axis to sort and get the k indices, value."
                 "if not set, will get k value in last axis.")
        .SetDefault(-1);
    AddAttr<bool>("largest",
                  "control flag whether to return largest or smallest")
        .SetDefault(true);
    AddAttr<bool>("sorted",
                  "control flag whether to return elements in sorted order")
        .SetDefault(true);
  }
};

class TopkV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Indices"), true,
        platform::errors::InvalidArgument("Input(Indices) should be not null"));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Grad Input(Out) should be not null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput(framework::GradVarName("X")), true,
        platform::errors::InvalidArgument("Grad Output(X) should be not null"));

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

template <typename T>
class TopkV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("top_k_v2_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetInput("Indices", this->Output("Indices"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(top_k_v2, ops::TopkV2Op, ops::TopkV2OpMaker,
                  ops::TopkV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::TopkV2GradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(top_k_v2_grad, ops::TopkV2OpGrad);

REGISTER_OP_CPU_KERNEL(top_k_v2,
                       ops::TopkV2Kernel<paddle::platform::CPUPlace, float>,
                       ops::TopkV2Kernel<paddle::platform::CPUPlace, double>,
                       ops::TopkV2Kernel<paddle::platform::CPUPlace, int32_t>,
                       ops::TopkV2Kernel<paddle::platform::CPUPlace, int64_t>)

REGISTER_OP_CPU_KERNEL(
    top_k_v2_grad, ops::TopkV2GradKernel<paddle::platform::CPUPlace, float>,
    ops::TopkV2GradKernel<paddle::platform::CPUPlace, double>,
    ops::TopkV2GradKernel<paddle::platform::CPUPlace, int32_t>,
    ops::TopkV2GradKernel<paddle::platform::CPUPlace, int64_t>)