norm.py 52.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define normalization api  
29

30
import six
31

Z
zhiboniu 已提交
32
from ...fluid.dygraph import BatchNorm  # noqa: F401
33

Z
zhiboniu 已提交
34
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
35 36

from ...fluid.dygraph import layers
37
from ...framework import get_default_dtype, set_default_dtype
C
ceci3 已提交
38 39 40 41 42
from ...fluid.framework import in_dygraph_mode

from ...fluid.initializer import Constant
from ...fluid.param_attr import ParamAttr
from ...fluid.data_feeder import check_variable_and_dtype, check_type
43 44 45 46 47 48 49
from ...fluid import core, dygraph_utils

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
50
from ...fluid.dygraph.base import no_grad
51
from .. import functional as F
52

53 54
__all__ = []

C
ceci3 已提交
55

56 57
class _InstanceNormBase(layers.Layer):
    """
C
cnn 已提交
58
    This class is based class for InstanceNorm1D, 2d, 3d. 
59

C
cnn 已提交
60
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
61 62 63 64 65 66 67 68 69 70 71 72 73
    """

    def __init__(self,
                 num_features,
                 epsilon=1e-5,
                 momentum=0.9,
                 weight_attr=None,
                 bias_attr=None,
                 data_format="NCHW",
                 name=None):
        super(_InstanceNormBase, self).__init__()

        if weight_attr == False or bias_attr == False:
74
            assert weight_attr == bias_attr, "weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        if weight_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon)

103 104 105 106
    def extra_repr(self):
        return 'num_features={}, epsilon={}'.format(self.scale.shape[0],
                                                    self._epsilon)

107

C
cnn 已提交
108
class InstanceNorm1D(_InstanceNormBase):
109
    r"""
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
166
          instance_norm = paddle.nn.InstanceNorm1D(2)
167 168
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
169
          print(instance_norm_out)
170 171 172 173 174 175 176 177 178

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
179
class InstanceNorm2D(_InstanceNormBase):
180
    r"""
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
237
          instance_norm = paddle.nn.InstanceNorm2D(2)
238 239
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
240
          print(instance_norm_out)
241 242 243 244 245 246 247 248
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
249
class InstanceNorm3D(_InstanceNormBase):
250
    r"""
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the weight_attr is not set, the parameter is initialized 
	     one. If it is set to False, will not create weight_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
             If it is set to False, will not create bias_attr. Default: None.
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
307
          instance_norm = paddle.nn.InstanceNorm3D(2)
308 309
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
310
          print(instance_norm_out.numpy)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


class GroupNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
328
        num_channels(int): The number of channels of input.
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
349

350 351 352 353 354 355 356
          import paddle
          import numpy as np

          paddle.disable_static()
          np.random.seed(123)
          x_data = np.random.random(size=(2, 6, 2, 2)).astype('float32')
          x = paddle.to_tensor(x_data) 
357
          group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
358 359
          group_norm_out = group_norm(x)

360
          print(group_norm_out.numpy())
361 362 363 364
    """

    def __init__(self,
                 num_groups,
365
                 num_channels,
366 367 368
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
369
                 data_format='NCHW',
370 371 372 373 374 375 376
                 name=None):
        super(GroupNorm, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
377
        if data_format != 'NCHW':
378
            raise ValueError("unsupported data layout:" + data_format)
379 380 381

        param_shape = [self._num_channels]

382 383 384 385 386 387 388 389 390 391
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
392

393 394 395 396 397 398 399 400 401 402 403
        if bias_attr == False:
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True)
            self.bias.stop_gradient = True
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

    def forward(self, input):
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._num_groups})

        return self._helper.append_activation(group_norm_out, None)

433 434 435 436
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
            self._num_groups, self._num_channels, self._epsilon)

437 438

class LayerNorm(layers.Layer):
439
    r"""
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}

        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
          layer_norm = paddle.nn.LayerNorm(x_data.shape[1:])
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
500
          print(layer_norm_out)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    """

    def __init__(self,
                 normalized_shape,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 name=None):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))

        if bias_attr is False:
            self.bias = None
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)

    def forward(self, input):
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon)

541 542 543 544
    def extra_repr(self):
        return 'normalized_shape={}, epsilon={}'.format(self._normalized_shape,
                                                        self._epsilon)

545 546 547 548 549 550 551 552 553 554 555 556 557

class _BatchNormBase(layers.Layer):
    """
    BatchNorm base .
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
C
ceci3 已提交
558
                 use_global_stats=None,
559 560 561 562 563
                 name=None):
        super(_BatchNormBase, self).__init__()
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
564
        self._use_global_stats = use_global_stats
565 566 567 568 569 570 571

        if get_default_dtype() == 'float16':
            set_default_dtype('float32')

        param_shape = [num_features]

        # create parameter
572 573 574 575 576 577 578 579 580 581
        if weight_attr == False:
            self.weight = self.create_parameter(
                attr=None, shape=param_shape, default_initializer=Constant(1.0))
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
                default_initializer=Constant(1.0))
            self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.
582

583 584 585 586 587 588 589 590 591 592 593
        if bias_attr == False:
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True)
            self.bias.stop_gradient = True
        else:
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True)
            self.bias.stop_gradient = self._bias_attr != None and self._bias_attr.learning_rate == 0.
594 595 596 597 598 599 600 601 602 603 604 605 606 607

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True),
608
            shape=param_shape)
609 610 611 612 613 614 615 616
        self._mean.stop_gradient = True

        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True),
617
            shape=param_shape)
618 619 620 621 622 623 624
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
625
        self._name = name
626 627 628 629

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

630 631 632
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

633 634
    def forward(self, input):

635 636
        self._check_data_format(self._data_format)

637 638
        self._check_input_dim(input)

639
        if self.training:
640 641 642 643 644 645 646 647 648 649 650 651
            warnings.warn(
                "When training, we now always track global mean and variance.")

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
C
ceci3 已提交
652 653
            data_format=self._data_format,
            use_global_stats=self._use_global_stats)
654

655 656 657 658 659 660 661 662 663
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
            self._num_features, self._momentum, self._epsilon)
        if self._data_format is not 'NCHW':
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

664

C
cnn 已提交
665
class BatchNorm1D(_BatchNormBase):
666
    r"""
667 668
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
ceci3 已提交
669
    When use_global_stats = False, the :math:`\\mu_{\\beta}`
670 671 672 673 674 675 676 677 678 679
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

C
ceci3 已提交
680
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
713
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Defalut "NCL".
C
ceci3 已提交
714
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
715 716 717
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
718 719
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
    

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
735
          batch_norm = paddle.nn.BatchNorm1D(1)
736 737
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
738
          print(batch_norm_out)
739 740
    """

C
ceci3 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCL',
                 use_global_stats=None,
                 name=None):
        super(BatchNorm1D,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, use_global_stats, name)

754 755 756
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
757 758
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
759
        else:
F
Feiyu Chan 已提交
760 761
            raise ValueError(
                'expected NC , NCL, NLC or None for data_format input')
762

763 764 765 766 767 768
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
            raise ValueError('expected 2D or 3D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
769
class BatchNorm2D(_BatchNormBase):
770
    r"""
771 772
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
ceci3 已提交
773
    When use_global_stats = False, the :math:`\\mu_{\\beta}`
774 775 776 777 778 779 780 781 782 783
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

C
ceci3 已提交
784
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
817
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
818
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
819 820 821
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
822 823
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
824 825 826 827 828 829 830 831 832 833 834 835 836 837
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
838
          batch_norm = paddle.nn.BatchNorm2D(1)
839 840
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
841
          print(batch_norm_out)
842 843
    """

844
    def _check_data_format(self, input):
845
        if input == 'NCHW':
846
            self._data_format = input
F
Feiyu Chan 已提交
847 848
        elif input == "NHWC":
            self._data_format = input
849
        else:
F
Feiyu Chan 已提交
850
            raise ValueError('expected NCHW or NHWC for data_format input')
851

852 853 854 855 856 857
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
            raise ValueError('expected 4D input (got {}D input)'.format(
                len(input.shape)))


C
cnn 已提交
858
class BatchNorm3D(_BatchNormBase):
859
    r"""
860 861
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

C
ceci3 已提交
862
    When use_global_stats = False, the :math:`\\mu_{\\beta}`
863 864 865 866 867 868 869 870 871 872
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

C
ceci3 已提交
873
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The normalization function formula is as follows:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as weight_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
906
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
907
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
908 909 910
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
911 912
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
913 914 915 916 917 918 919 920 921 922 923 924 925 926
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np

          np.random.seed(123)
          x_data = np.random.random(size=(2, 1, 2, 2, 3)).astype('float32')
          x = paddle.to_tensor(x_data) 
C
cnn 已提交
927
          batch_norm = paddle.nn.BatchNorm3D(1)
928 929
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
930
          print(batch_norm_out)
931 932
    """

C
ceci3 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945
    def __init__(self,
                 num_features,
                 momentum=0.9,
                 epsilon=1e-05,
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCDHW',
                 use_global_stats=None,
                 name=None):
        super(BatchNorm3D,
              self).__init__(num_features, momentum, epsilon, weight_attr,
                             bias_attr, data_format, use_global_stats, name)

946 947 948
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
949 950
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
951
        else:
F
Feiyu Chan 已提交
952 953
            raise ValueError(
                'expected NCDHW, NDHWC or None for data_format input')
954

955 956 957 958 959 960
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
            raise ValueError('expected 5D input (got {}D input)'.format(
                len(input.shape)))


961
class SyncBatchNorm(_BatchNormBase):
962
    r"""
C
ceci3 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can 
    be used as a normalizer function for other operations, such as conv2d and fully connected 
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    When model in training mode, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are global statistics (moving_mean and moving_variance, 
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

    The formula of normalization is as follows:
 
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\eps}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\eps` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable scale parameter vector
    - :math:`\\beta` : trainable shift parameter vector 

1007 1008 1009 1010 1011
    Note:
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the 
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of 
        ``list`` to pack the model. 

C
ceci3 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. If it is set to False, 
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. If it is set to False, this layer will not 
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn as nn
          import numpy as np

          x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
          x = paddle.to_tensor(x)
C
ceci3 已提交
1040 1041

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1042 1043
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1044
              print(hidden1)
C
ceci3 已提交
1045 1046 1047 1048 1049 1050
              # [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
    """

    def __init__(self,
                 num_features,
                 momentum=0.9,
1051
                 epsilon=1e-05,
C
ceci3 已提交
1052 1053 1054 1055
                 weight_attr=None,
                 bias_attr=None,
                 data_format='NCHW',
                 name=None):
1056 1057
        super(SyncBatchNorm,
              self).__init__(num_features, momentum, epsilon, weight_attr,
C
ceci3 已提交
1058
                             bias_attr, data_format, None, name)
C
ceci3 已提交
1059

C
ceci3 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1070
    def forward(self, x):
C
ceci3 已提交
1071
        self._check_data_format()
C
ceci3 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        ### train mode: use mini-batch stats, eval mode: use global stats
        ### use_global_stats only support False in sync_batch_norm
        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", not self.training, "data_layout",
1083
                     self._data_format, "use_mkldnn", False, "fuse_with_relu",
C
ceci3 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092
                     False, "use_global_stats", False, 'trainable_statistics',
                     False)
            sync_batch_norm_out, _, _, _, _, _ = core.ops.sync_batch_norm(
                x, self.weight, self.bias, self._mean, self._variance, mean_out,
                variance_out, *attrs)

            return sync_batch_norm_out

        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
1093
                                 'SyncBatchNorm')
C
ceci3 已提交
1094 1095 1096 1097 1098

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1099
            "data_layout": self._data_format,
C
ceci3 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return sync_batch_norm_out
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1150
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1151 1152 1153 1154 1155
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
C
ceci3 已提交
1156 1157 1158
            if layer._weight_attr != None and not isinstance(
                    layer._weight_attr,
                    bool) and layer._weight_attr.name != None:
C
ceci3 已提交
1159
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
C
ceci3 已提交
1160 1161
            if layer._bias_attr != None and not isinstance(
                    layer._bias_attr, bool) and layer._bias_attr.name != None:
C
ceci3 已提交
1162 1163
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1164 1165 1166 1167
            layer_output = SyncBatchNorm(layer._num_features, layer._momentum,
                                         layer._epsilon, layer._weight_attr,
                                         layer._bias_attr, layer._data_format,
                                         layer._name)
1168 1169 1170 1171 1172 1173 1174 1175

            if layer._weight_attr != False and layer._bias_attr != False:
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1176
        for name, sublayer in layer.named_children():
1177 1178 1179 1180
            layer_output.add_sublayer(name,
                                      cls.convert_sync_batchnorm(sublayer))
        del layer
        return layer_output
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240


class LocalResponseNorm(layers.Layer):
    """
        Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
        For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

        See more details in :ref:`api_paddle_nn_functional_local_response_norm` .

        Parameters:
            size (int): The number of channels to sum over.
            alpha (float, optional): The scaling parameter, positive. Default:1e-4
            beta (float, optional): The exponent, positive. Default:0.75
            k (float, optional): An offset, positive. Default: 1.0
            data_format (str, optional): Specify the data format of the input, and the data format of the output
                will be consistent with that of the input. An optional string from:
                If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
                the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
                If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
                If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
                the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
            name (str, optional): Name for the operation (optional, default is None). For more information,
                please refer to :ref:`api_guide_Name`.

        Shape:
            - input: 3-D/4-D/5-D tensor.
            - output: 3-D/4-D/5-D tensor, the same shape as input.

        Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
            m = paddle.nn.LocalResponseNorm(size=5)
            y = m(x)
            print(y.shape)  # [3, 3, 112, 112]
        """

    def __init__(self,
                 size,
                 alpha=0.0001,
                 beta=0.75,
                 k=1.0,
                 data_format="NCHW",
                 name=None):
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
        out = F.local_response_norm(input, self.size, self.alpha, self.beta,
                                    self.k, self.data_format, self.name)
        return out
1241 1242 1243 1244 1245 1246 1247 1248 1249

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
            self.size, self.alpha, self.beta, self.k)
        if self.data_format is not 'NCHW':
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str