partial_program.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20 21
from paddle.fluid import framework, backward, core
from paddle.fluid.dygraph import layers
22
from paddle.fluid.dygraph.base import switch_to_static_graph
23
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
24
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_NO_VALUE_MAGIC_NUM
25 26
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
27 28
import paddle.compat as cpt

29 30 31 32 33 34 35 36 37

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
38
        self.__input_list = self.tolist()
39 40 41 42 43 44 45 46 47 48 49 50 51
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
52
        assert len(self.__input_list) == len(value_list)
53 54 55 56
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
57
        for idx, var in enumerate(self.__input_list):
58 59 60 61 62 63 64 65 66 67 68
            if isinstance(var, (framework.Variable, core.VarBase)):
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
69
            for var in self.__input_list:
70 71 72
                if not isinstance(var, (framework.Variable, core.VarBase)):
                    warning_types.add(type(var))
            if warning_types:
73
                logging_utils.warn(
74 75 76 77 78 79 80 81 82 83
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
                    "what we first saw. Please try to return them as tensor.".
                    format(list(warning_types)))

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
84
        return self.__input_list[item]
85

86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


110
class PartialProgramLayer:
111 112 113 114 115
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
116 117 118
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
119 120 121 122 123 124 125 126 127 128 129 130 131 132
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

    def __init__(self, main_program, inputs, outputs, parameters=None):
        super(PartialProgramLayer, self).__init__()
133 134
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
135
        self._params = parameters if parameters is not None else []
136

137
        self._origin_main_program = self._verify_program(main_program)
138 139 140
        self._tmp_scope_vec = self._create_scope_vec()
        # A fake_var to handle empty input or output
        self.__fake_vars = _create_fake_var()
141
        # Set default mode to train
142
        self._double_grads = self._get_double_grads(self._origin_main_program)
143
        self.training = True
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    @LazyInitialized
    def _infer_program(self):
        """
        Lazy initialized property of infer_program.
        """
        return self._clone_for_test(self._origin_main_program)

    @LazyInitialized
    def _train_program(self):
        """
        Lazy initialized property of train_program.
        """
        train_program = self._append_backward_desc(self._origin_main_program)
        # Note: Only set grad type once after initializing train program. So we
        # put it here.
        self._set_grad_type(self._params, train_program)

        return train_program

164 165 166 167 168 169 170 171 172 173 174 175
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

176
    @switch_to_static_graph
177
    def _append_backward_desc(self, main_program):
178 179
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
180
        targets = []
181
        for out in self._outputs.tolist():
182 183 184 185 186 187 188 189
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

        if targets and self._params:
            backward.gradients(targets=targets, inputs=[])

        return program

190 191 192 193 194 195 196 197 198 199
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
200
            found_param = False
201
            for block in program.blocks:
202 203 204 205 206 207
                for op in block.ops:
                    if param.name in op.input_arg_names or param.name in op.output_arg_names:
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
208 209 210 211
                    break

        self._params = required_params

212 213 214 215 216 217 218 219 220 221 222
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
                    var_base = core.VarBase(var_desc.dtype(),
                                            var_desc.shape(),
                                            var_desc.name(),
                                            var_desc.type(), False)
                    double_grads.append(var_base)
223
        return self._valid_vars(double_grads)
224

225 226
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
227 228 229 230 231

        attrs = ('global_block', self.program.desc.block(0), 'start_op_index',
                 0, 'end_op_index', self._infer_program.desc.block(0).op_size(),
                 'is_test', not self.training)
        core.ops.run_program(
232 233 234 235
            self._valid_vars(in_vars),
            self._valid_vars(self._params),
            self._valid_vars(out_vars), self._tmp_scope_vec, self._double_grads,
            *attrs)
236

237 238
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
239

240 241 242 243
    @property
    def program(self):
        return self._train_program if self.training else self._infer_program

244 245 246 247 248
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
249 250
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
251 252
        # Convert variable into VarBase and feed in training data.
        input_vars = []
253
        expected_place = framework._current_expected_place()
254
        for i, value in enumerate(flatten_inputs):
255 256 257
            if isinstance(value, np.ndarray):
                var = core.VarBase(
                    value=value,
258
                    name=self._inputs[i].desc.name(),
259
                    persistable=False,
260
                    place=expected_place,
261 262
                    zero_copy=True)
            elif isinstance(value, core.VarBase):
263 264 265 266 267 268 269
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
                        expected_place):
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
270 271
                else:
                    var = value
272
                var.name = self._inputs[i].desc.name()
273 274 275
            else:
                continue
            input_vars.append(var)
276

277 278
        def create_out(var_id):
            var = self._outputs[var_id]
279
            assert isinstance(var, framework.Variable)
280 281 282 283
            var_desc = var.desc
            var_base = core.VarBase(var_desc.dtype(),
                                    var_desc.shape(),
                                    var_desc.name(), var_desc.type(), False)
284 285 286 287 288 289
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
290

291
    def _create_scope_vec(self):
292 293 294 295 296
        # Hold forward variables
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)

297 298 299
        inner_scope = core.Scope()
        tmp_scope_vec.value().set_scope(inner_scope)
        return tmp_scope_vec
300

301 302 303 304 305 306 307 308 309
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
310
        if outs is not None and len(outs) == 1:
311 312 313 314
            outs = outs[0]

        return outs

315 316 317 318
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

319
    def _is_no_value(self, var):
320 321 322
        if isinstance(var, core.VarBase) and var.shape == [1]:
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
        if isinstance(out_vars, core.VarBase):
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var))
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

            has_removed = (len(out_vars) > len(res))
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

353
    def _set_grad_type(self, params, train_program):
354 355 356 357 358 359 360 361
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
362
            grad_var = train_program.desc.block(0).find_var(
363 364 365 366 367 368
                cpt.to_bytes(grad_name))
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

369 370 371 372 373 374 375 376 377 378 379 380 381
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

382 383 384 385 386 387 388 389 390 391 392 393
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
                % type(self._params))

394 395 396 397
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
            if not isinstance(var, core.VarBase):
398
                raise TypeError(
399 400 401
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.
                    format(i, type(var)))
            param_and_buffer_names_set.add(var.name)
402 403

        for block in main_program.blocks:
404
            for name, var in six.iteritems(block.vars):
405
                if isinstance(var, framework.Parameter):
406
                    if name not in param_and_buffer_names_set:
407 408 409 410 411 412 413 414
                        raise ValueError(
                            "\n\tWe don't support to define layer with parameters in the function "
                            "decorated by `@declarative`.\n\tBecause that will re-defined parameters "
                            "every time when you run the function.\n\t"
                            "But we found parameter(%s) was created in the decorated function.\n\t"
                            "Please define the layer with parameters in `__init__` function."
                            % name)

415 416 417 418 419 420 421 422
    def _valid_vars(self, vars):
        """
        Note: run_program_op.InferShape requires `X`/'Out' not be null.
        But it's common in dy2static, fake varBase is created to handle the
        problem.
        """
        return vars if vars else self.__fake_vars

423

424
def _create_fake_var():
425
    """
426
    Create a fake_var (force on CPU) to handle empty input or output
427 428
    """
    return [
429 430
        core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                     core.VarDesc.VarType.RAW, False)
431 432 433 434 435 436 437 438 439 440 441
    ]


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

    return PartialProgramLayer(concrete_program.main_program, inputs,
                               concrete_program.outputs,
                               concrete_program.parameters)