shuffle_channel_op.h 3.3 KB
Newer Older
S
shippingwang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
shippingwang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ShuffleChannelOpKernel : public framework::OpKernel<T> {
 public:
S
shippingwang 已提交
24
  void Compute(const framework::ExecutionContext& ctx) const override {
S
shippingwang 已提交
25 26
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
S
shippingwang 已提交
27
    int group = ctx.Attr<int>("group");
S
shippingwang 已提交
28 29 30 31 32 33 34 35 36 37

    auto input_dims = input->dims();
    auto num = input_dims[0];
    auto channel = input_dims[1];
    auto height = input_dims[2];
    auto weight = input_dims[3];

    auto feature_map_size = channel * height * weight;
    auto sp_sz = height * weight;
    int group_row = group;
S
shippingwang 已提交
38
    int group_column = channel / group_row;
S
shippingwang 已提交
39 40

    const T* input_data = input->data<T>();
S
shippingwang 已提交
41
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
S
shippingwang 已提交
42 43 44
    for (int n = 0; n < num; ++n) {
      for (int i = 0; i < group_row; ++i) {
        for (int j = 0; j < group_column; ++j) {
S
shippingwang 已提交
45 46 47 48 49
          const T* p_i = input_data + n * feature_map_size +
                         (i * group_column + j) * sp_sz;
          T* p_o =
              output_data + n * feature_map_size + (j * group_row + i) * sp_sz;
          memcpy(p_o, p_i, sizeof(int) * sp_sz);
S
shippingwang 已提交
50 51 52 53 54 55 56 57 58 59
        }
      }
    }
  }
};

template <typename DeviceContext, typename T>
class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
60 61 62 63 64
    auto* output_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* input_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("X"));

S
shippingwang 已提交
65
    int group = ctx.Attr<int>("group");
S
shippingwang 已提交
66

67
    const auto& input_dims = input_grad->dims();
S
shippingwang 已提交
68 69 70 71 72 73 74 75
    auto num = input_dims[0];
    auto channel = input_dims[1];
    auto height = input_dims[2];
    auto weight = input_dims[3];
    auto feature_map_size = channel * height * weight;
    auto sp_sz = height * weight;

    int group_row = group;
S
shippingwang 已提交
76
    int group_column = channel / group_row;
S
shippingwang 已提交
77 78 79 80 81 82

    T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    const T* output_grad_data = output_grad->data<T>();
    for (int n = 0; n < num; ++n) {
      for (int i = 0; i < group_row; ++i) {
        for (int j = 0; j < group_column; ++j) {
S
shippingwang 已提交
83 84 85 86 87
          const T* p_i = output_grad_data + n * feature_map_size +
                         (i * group_column + j) * sp_sz;
          T* p_o = input_grad_data + n * feature_map_size +
                   (j * group_row + i) * sp_sz;
          memcpy(p_o, p_i, sizeof(int) * sp_sz);
S
shippingwang 已提交
88 89 90 91 92 93 94 95
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle