executor_thread_worker.cc 21.7 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
H
heqiaozhi 已提交
16
#include <algorithm>
X
xjqbest 已提交
17
#include <utility>
W
Wang Guibao 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
31
#include "paddle/fluid/platform/cpu_helper.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/platform/place.h"
33
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
34 35 36 37
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

H
heqiaozhi 已提交
38
#ifdef PADDLE_WITH_PSLIB
39
int DensePullThread::start() {
D
dongdaxiang 已提交
40 41 42
  _running = true;
  _t = std::thread(&DensePullThread::run, this);
  return 0;
43 44 45
}

void DensePullThread::run() {
D
dongdaxiang 已提交
46 47 48 49 50 51 52 53 54 55 56
  while (_running) {
    _pull_dense_status.resize(0);
    for (auto& t : _dense_variable_name) {
      if (check_update_param(t.first)) {
        auto status = pull_dense(t.first);
        _pull_dense_status.emplace_back(std::move(status));
        reset_thread_version(t.first);
      }
    }
    if (_pull_dense_status.size() != 0) {
      wait_all();
57
    }
H
heqiaozhi 已提交
58

D
dongdaxiang 已提交
59 60
    usleep(_sleep_time_ms * 1000);
  }
61 62
}
bool DensePullThread::check_update_param(uint64_t table_id) {
D
dongdaxiang 已提交
63 64 65 66 67 68 69 70 71 72
  {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    auto& version = _training_versions[table_id];
    _current_version[table_id] =
        *(std::min_element(version.begin(), version.end()));
  }
  if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
    return false;
  }
  return true;
73 74 75
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
D
dongdaxiang 已提交
76 77
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _last_versions[table_id] = _current_version[table_id];
78 79
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
D
dongdaxiang 已提交
80 81 82 83
  auto& regions = _regions[table_id];
  regions.clear();
  auto& variables = _dense_variable_name[table_id];
  regions.resize(variables.size());
H
heqiaozhi 已提交
84

D
dongdaxiang 已提交
85 86 87 88
  for (auto i = 0u; i < variables.size(); ++i) {
    auto& t = variables[i];
    Variable* var = _root_scope->FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
89

D
dongdaxiang 已提交
90 91 92 93 94
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
95 96 97
}

void DensePullThread::wait_all() {
D
dongdaxiang 已提交
98 99 100 101
  for (auto& t : _pull_dense_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
H
heqiaozhi 已提交
102
      LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
103
    }
D
dongdaxiang 已提交
104
  }
H
heqiaozhi 已提交
105

D
dongdaxiang 已提交
106 107 108 109
  if (_pull_dense_fail_times > 20) {
    LOG(FATAL) << "pull dense failed times more than 20 times";
    exit(-1);
  }
H
heqiaozhi 已提交
110

D
dongdaxiang 已提交
111
  _pull_dense_status.resize(0);
112 113
}

H
heqiaozhi 已提交
114 115
void DensePullThread::increase_thread_version(int thread_id,
                                              uint64_t table_id) {
D
dongdaxiang 已提交
116 117
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _training_versions[table_id][thread_id]++;
118
}
D
dongdaxiang 已提交
119
#endif
H
heqiaozhi 已提交
120

W
Wang Guibao 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
185
  LOG(WARNING) << "concurrency capacity " << concurrency_cap;
W
Wang Guibao 已提交
186 187
  int thread_id = this->thread_id_;

T
Tao Luo 已提交
188
  if (static_cast<unsigned>(thread_id) < concurrency_cap) {
W
Wang Guibao 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

Y
Yu Yang 已提交
229 230
static void print_fetch_var(Scope* scope, const std::string& var_name) {
  auto& tensor = scope->FindVar(var_name)->Get<LoDTensor>();
W
Wang Guibao 已提交
231

Y
Yu Yang 已提交
232 233 234 235 236 237 238 239 240 241
#define PrintLoDTensorCallback(cpp_type, proto_type) \
  do {                                               \
    if (tensor.type() == proto_type) {               \
      print_lod_tensor<cpp_type>(var_name, tensor);  \
      return;                                        \
    }                                                \
  } while (0)

  _ForEachDataType_(PrintLoDTensorCallback);
  VLOG(1) << "print_fetch_var: unrecognized data type:" << tensor.type();
W
Wang Guibao 已提交
242 243
}

244 245 246 247
void ExecutorThreadWorker::TrainFilesWithTimer() {
  platform::SetNumThreads(1);
  SetDevice();
  thread_reader_->Start();
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
  while ((cur_batch = thread_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
      timeline.Start();
      ops_[i]->Run(*thread_scope_, place_);
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
    ++batch_cnt;
    thread_scope_->DropKids();
277
    if (thread_id_ == 0) {
D
dongdaxiang 已提交
278
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
279 280 281 282 283 284 285 286 287
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        int fetch_var_num = fetch_var_names_.size();
        for (int i = 0; i < fetch_var_num; ++i) {
          print_fetch_var(thread_scope_, fetch_var_names_[i]);
        }
D
dongdaxiang 已提交
288
        fprintf(stderr, "IO percent: %f\n", read_time / total_time);
289 290 291 292 293 294
      }
    }
    timeline.Start();
  }
}

W
Wang Guibao 已提交
295
void ExecutorThreadWorker::TrainFiles() {
296 297
  platform::SetNumThreads(1);

W
Wang Guibao 已提交
298
  // todo: configurable
D
dongdaxiang 已提交
299
  // SetDevice();
W
Wang Guibao 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

H
heqiaozhi 已提交
343
#ifdef PADDLE_WITH_PSLIB
344
//  AsyncExecutor
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

373 374
void AsyncExecutorThreadWorker::SetPSlibPtr(
    std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
D
dongdaxiang 已提交
375
  _pslib_ptr = pslib_ptr;
376
}
377

378 379
void AsyncExecutorThreadWorker::SetPullDenseThread(
    std::shared_ptr<DensePullThread> dpt) {
D
dongdaxiang 已提交
380
  _pull_dense_thread = dpt;
381
}
382

383
void AsyncExecutorThreadWorker::TrainOneNetwork() {
D
dongdaxiang 已提交
384
  PrepareParams();
H
heqiaozhi 已提交
385

D
dongdaxiang 已提交
386 387 388 389 390 391
  for (auto& op : ops_) {
    if (op->Type().find("sgd") != std::string::npos) {
      continue;
    }
    bool need_skip = false;
    for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
H
heqiaozhi 已提交
392
      if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
D
dongdaxiang 已提交
393 394 395 396 397 398
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op->Run(*thread_scope_, place_);
399
    }
D
dongdaxiang 已提交
400 401
  }
  UpdateParams();
402 403
}

404 405
void AsyncExecutorThreadWorker::SetParamConfig(
    AsyncWorkerParamConfig* param_config) {
D
dongdaxiang 已提交
406
  _param_config = param_config;
407 408 409
}

void AsyncExecutorThreadWorker::PrepareParams() {
D
dongdaxiang 已提交
410 411 412 413 414 415 416 417 418
  for (auto table_id : _param_config->sparse_table_id) {
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
      t.wait();
      auto status = t.get();
      if (status != 0) {
        LOG(ERROR) << "pull sparse failed, status[" << status << "]";
        exit(-1);
      }
419
    }
D
dongdaxiang 已提交
420 421
  }
  _pull_sparse_status.resize(0);
422

D
dongdaxiang 已提交
423 424 425
  for (auto table_id : _param_config->sparse_table_id) {
    FillSparse(table_id);
  }
426 427 428
}

void AsyncExecutorThreadWorker::UpdateParams() {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
445
    }
446 447 448 449 450 451 452 453
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
454
    }
455 456 457 458 459 460 461 462
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
463 464 465
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
D
dongdaxiang 已提交
466 467 468 469 470 471 472 473 474 475
  std::vector<paddle::ps::Region> regions;
  for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
    Variable* var = thread_scope_->FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
H
heqiaozhi 已提交
476 477 478

  auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
D
dongdaxiang 已提交
479
  _push_dense_status.push_back(std::move(status));
480 481 482
}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {
483 484 485 486 487 488 489
  auto& features = _features[table_id];
  auto& feature_value = _feature_value[table_id];
  auto fea_dim = _param_config->fea_dim;
  // slot id starts from 1
  features.clear();
  features.resize(0);
  features.reserve(MAX_FEASIGN_NUM);
H
heqiaozhi 已提交
490
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
491 492 493 494 495 496 497 498 499 500 501 502 503
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      // todo(colourful-tree): current trick - filter feasign=use_slot_mod(
      // bug: datafeed fill use_slot_mod for empty slot)
      if (ids[i] == 0u) {
        continue;
      }
      features.push_back(static_cast<uint64_t>(ids[i]));
H
heqiaozhi 已提交
504
    }
505
  }
H
heqiaozhi 已提交
506 507
  check_pull_push_memory(features, &feature_value, fea_dim);

508 509 510 511
  std::vector<float*> pull_feature_value;
  for (auto i = 0u; i < features.size(); ++i) {
    pull_feature_value.push_back(feature_value[i].data());
  }
H
heqiaozhi 已提交
512

513 514 515
  auto status = _pslib_ptr->_worker_ptr->pull_sparse(
      pull_feature_value.data(), table_id, features.data(), features.size());
  _pull_sparse_status.push_back(std::move(status));
H
heqiaozhi 已提交
516

517
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
518
  check_pull_push_memory(features, &push_g, fea_dim);
519
  collect_feasign_info(table_id);
520 521 522
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
523 524 525 526
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& fea_value = _feature_value[table_id];
H
heqiaozhi 已提交
527

528
  CHECK(features.size() > 0) << "feature size check failed";
H
heqiaozhi 已提交
529

530
  auto fea_idx = 0u;
H
heqiaozhi 已提交
531

532
  std::vector<float> init_value(fea_dim);
H
heqiaozhi 已提交
533 534

  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
535 536 537 538 539 540 541 542 543
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(
        _param_config->slot_input_vec[table_id][slot_idx - 1]);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
544 545
    float* ptr =
        tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
546 547
    memset(ptr, 0, sizeof(float) * len * slot_dim);
    auto& tensor_lod = tensor->lod()[0];
H
heqiaozhi 已提交
548

549 550
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
H
heqiaozhi 已提交
551

552 553
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
H
heqiaozhi 已提交
554 555
        memcpy(ptr + slot_dim * index, init_value.data() + 2,
               sizeof(float) * slot_dim);
556 557
        continue;
      }
H
heqiaozhi 已提交
558 559
      memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * slot_dim);
560
      fea_idx++;
561
    }
562
  }
563 564 565
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
566 567 568 569
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
570 571 572 573
  check_pull_push_memory(features, &push_g, fea_dim);
  CHECK(push_g.size() == features.size() + 1)
      << "push_g size:" << push_g.size()
      << " features size:" << features.size();
574 575 576 577
  uint64_t fea_idx = 0u;
  auto& fea_info = _fea_info[table_id];
  int offset = 2;
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
H
heqiaozhi 已提交
578
  // slot_idx = 0 is label
579
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
580 581 582 583 584 585
    if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
        _param_config->slot_alias_to_table.end()) {
      LOG(ERROR) << "ERROR slot_idx:" << slot_idx
                 << " name:" << feed_vec[slot_idx];
    } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
               table_id) {
586
      continue;
587
    }
588 589
    Variable* g_var = thread_scope_->FindVar(
        _param_config->gradient_var[table_id][slot_idx - 1]);
H
heqiaozhi 已提交
590 591 592
    CHECK(g_var != nullptr)
        << "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
        << "] not found";
593 594
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
H
heqiaozhi 已提交
595 596 597
      LOG(ERROR) << "var["
                 << _param_config->gradient_var[table_id][slot_idx - 1]
                 << "] not found";
598 599 600
      exit(-1);
    }
    float* g = g_tensor->data<float>();
H
heqiaozhi 已提交
601

602 603 604 605 606 607 608 609
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
H
heqiaozhi 已提交
610 611 612 613
    CHECK(slot_dim * len == g_tensor->numel())
        << "len:" << len << " g_numel:" << g_tensor->numel();
    CHECK(len == tensor->numel()) << "len:" << len
                                  << "t_numel:" << tensor->numel();
614 615 616 617 618 619
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += slot_dim;
        continue;
      }
H
heqiaozhi 已提交
620
      memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
621
      push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
622 623
      CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
                                       << " size:" << fea_info.size();
624 625 626
      push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
      g += slot_dim;
      fea_idx++;
627
    }
628
  }
H
heqiaozhi 已提交
629 630
  CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
                                    << " features size:" << features.size();
631
  CHECK_GT(features.size(), 0);
H
heqiaozhi 已提交
632

633 634 635 636 637
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < features.size(); ++i) {
    push_g_vec.push_back(push_g[i].data());
  }
  auto status = _pslib_ptr->_worker_ptr->push_sparse(
H
heqiaozhi 已提交
638 639
      table_id, features.data(), (const float**)push_g_vec.data(),
      features.size());
640
  _push_sparse_status.push_back(std::move(status));
641 642
}

H
heqiaozhi 已提交
643
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
644 645 646 647 648 649 650
  auto& fea_info = _fea_info[table_id];
  auto& feature = _features[table_id];
  fea_info.resize(feature.size());
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
  Variable* var = thread_scope_->FindVar(feed_vec[0]);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label = tensor->data<int64_t>();
H
heqiaozhi 已提交
651

652 653 654
  int global_index = 0;
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
655
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
656
    int64_t* ids = tensor->data<int64_t>();
H
heqiaozhi 已提交
657

658 659 660 661 662
    int fea_idx = 0;
    for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        if (ids[fea_idx] == 0u) {
          continue;
663
        }
664
        FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
H
heqiaozhi 已提交
665

666 667
        fea_info[global_index++] = std::move(info);
      }
668
    }
669
  }
H
heqiaozhi 已提交
670 671
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
672 673 674
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
675 676 677 678
    const std::vector<uint64_t>& features,
    std::vector<std::vector<float>>* push_g, int dim) {
  push_g->resize(features.size() + 1);
  for (auto& t : *push_g) {
D
dongdaxiang 已提交
679 680
    t.resize(dim);
  }
681 682 683
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
684
    const std::vector<uint64_t>& features, std::vector<float*>* push_g,
D
dongdaxiang 已提交
685
    int dim) {
H
heqiaozhi 已提交
686 687 688
  if (features.size() > push_g->size()) {
    push_g->reserve(features.size() + 1);
    auto size = features.size() - push_g->size() + 1;
D
dongdaxiang 已提交
689 690
    for (auto i = 0u; i < size; ++i) {
      float* ptr = new float[dim];
H
heqiaozhi 已提交
691
      push_g->push_back(ptr);
692
    }
D
dongdaxiang 已提交
693
  }
694
}
H
heqiaozhi 已提交
695
#endif
696

W
Wang Guibao 已提交
697 698
}  // einit_modelnd namespace framework
}  // end namespace paddle