elementwise_op_function.h 84.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <glog/logging.h>
18
#include <algorithm>
19
#include <functional>  // for multiplies
D
dzhwinter 已提交
20
#include <iterator>
21
#include <vector>
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25 26 27
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/platform/gpu_info.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/transform.h"
29

C
chengduoZH 已提交
30
#ifdef __NVCC__
31
#include <cuda.h>
C
chengduoZH 已提交
32
#include <thrust/iterator/iterator_adaptor.h>
33
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
34
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
35
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
36 37
#endif

Y
Yi Wang 已提交
38
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/platform/for_range.h"
40 41 42 43 44 45
#define GetDivMod(dividend, divisor, div, mod) \
  do {                                         \
    const auto dividend_copy = dividend;       \
    *div = dividend_copy / divisor;            \
    *mod = dividend_copy % divisor;            \
  } while (0)
46 47 48 49 50 51 52 53 54 55

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
56
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
57 58
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
59
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
60
 *
61 62
 * New parameter: *is_run_common_broadcast* is a flag to record whether to run
 * common broadcast code.
63
 */
64 65
inline void get_mid_dims(const framework::DDim &x_dims,
                         const framework::DDim &y_dims, const int axis,
66 67
                         int *pre, int *n, int *post,
                         int *is_run_common_broadcast) {
68 69 70
  *pre = 1;
  *n = 1;
  *post = 1;
71 72 73 74 75 76 77 78 79 80 81 82 83 84
  *is_run_common_broadcast = 0;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    if (x_dims[i + axis] != y_dims[i]) {
      PADDLE_ENFORCE(y_dims[i] == 1 || x_dims[i + axis] == 1,
                     "ShapeError: broadcast dimension mismatch. Operands "
                     "could not be broadcast together with the shape of "
                     "X = [%s] and the shape of Y = [%s]. Received [%d] "
                     "in X is not equal to [%d] in Y",
                     x_dims, y_dims, x_dims[i + axis], y_dims[i]);
      *is_run_common_broadcast = 1;
      return;
85
    }
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    (*n) *= y_dims[i];
  }
  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
}
inline int GetElementwiseIndex(const int *x_dims_array, const int max_dim,
                               const int *index_array) {
  int index_ = 0;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] > 1) {
      index_ = index_ * x_dims_array[i] + index_array[i];
    }
  }
  return index_;
}

inline void UpdateElementwiseIndexArray(const int *out_dims_array,
                                        const int max_dim, int *index_array) {
  for (int i = max_dim - 1; i >= 0; --i) {
    ++index_array[i];
    if (index_array[i] >= out_dims_array[i]) {
      index_array[i] -= out_dims_array[i];
109
    } else {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      break;
    }
  }
}

inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
                                   const framework::DDim &y_dims,
                                   int *x_dims_array, int *y_dims_array,
                                   int *out_dims_array, const int max_dim,
                                   const int axis) {
  PADDLE_ENFORCE_GE(axis, 0, "Axis should be in range [0, %d)", axis);
  PADDLE_ENFORCE_LT(axis, max_dim, "Axis should be in range [0, %d)", axis);
  if (x_dims.size() > y_dims.size()) {
    std::fill(y_dims_array, y_dims_array + axis, 1);
    if (axis + y_dims.size() < max_dim) {
      std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
126
    }
127 128 129 130 131 132
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array + axis);
  } else {
    std::fill(x_dims_array, x_dims_array + axis, 1);
    if (axis + x_dims.size() < max_dim) {
      std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
133
    }
134 135 136
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array + axis);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array);
  }
137

138 139 140 141 142 143 144 145
  for (int i = 0; i < max_dim; i++) {
    PADDLE_ENFORCE(x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
                       y_dims_array[i] <= 1,
                   "ShapeError: broadcast dimension mismatch. Operands could "
                   "not be broadcast together with the shape of X = [%s] and "
                   "the shape of Y = [%s]. Received [%d] in X is not equal to "
                   "[%d] in Y",
                   x_dims, y_dims, x_dims_array[i], y_dims_array[i]);
146 147
    if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
        (x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
148
      out_dims_array[i] = std::max(x_dims_array[i], y_dims_array[i]);
149 150
    } else {
      out_dims_array[i] = -1;
151
    }
152 153
  }
}
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const framework::Tensor *x,
                               const framework::Tensor *y, framework::Tensor *z,
                               int *x_dims_array, int *y_dims_array,
                               int *out_dims_array, int max_dim,
                               const platform::CPUDeviceContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
178
    }
179 180

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
181 182 183
  }
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef __NVCC__
template <typename Functor, typename T>
__global__ void CommonForwardBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const T *x, const T *y, T *out, int out_size,
    int max_dim, Functor func, const bool is_xsize_larger) {
  for (int out_index = blockIdx.x * blockDim.x + threadIdx.x;
       out_index < out_size; out_index += blockDim.x * gridDim.x) {
    int x_index = 0;
    int y_index = 0;
    int out_index_quotient = out_index;
    int remainder = 0;
#pragma unroll
    for (int i = max_dim - 1; i >= 0; --i) {
      GetDivMod(out_index_quotient, out_dims_array[i], &out_index_quotient,
                &remainder);
      x_index += remainder * x_strides_array[i];
      y_index += remainder * y_strides_array[i];
    }
    if (is_xsize_larger) {
      out[out_index] = func(x[x_index], y[y_index]);
    } else {
      out[out_index] = func(y[y_index], x[x_index]);
    }
  }
}

template <typename Functor, typename T>
void CommonForwardBroadcastCUDA(
    const framework::Tensor *x, const framework::Tensor *y,
    framework::Tensor *z, int *x_dims_array, int *y_dims_array,
    int *out_dims_array, int max_dim, const platform::CUDADeviceContext &ctx,
    Functor func, const bool is_xsize_larger = true) {
  const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
  auto cplace = platform::CPUPlace();
  const T *x_data = x->data<T>();
  const T *y_data = y->data<T>();
  T *out_data = z->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
  }

  int bytes = max_dim * sizeof(int);
  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  dim3 gird_size = dim3(
      (out_size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);

  CommonForwardBroadcastCUDAKernel<
      Functor, T><<<gird_size, block_size, 0, ctx.stream()>>>(
      x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu, x_data,
      y_data, out_data, out_size, max_dim, func, is_xsize_larger);
}

#endif  // __NVCC__

template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCPU(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CPUDeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
  if (dx_data != nullptr) {
    memset(dx_data, 0, dx->numel() * sizeof(T));
  }
  if (dy_data != nullptr) {
    memset(dy_data, 0, dy->numel() * sizeof(T));
  }
  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (dx_data != nullptr) {
      dx_data[x_index] += dx_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }
    if (dy_data != nullptr) {
      dy_data[y_index] += dy_op(x_data[x_index], y_data[y_index],
                                out_data[out_index], dout_data[out_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
  }
}

inline void ComputeBroadcastKernelSize(int *x_dims_array, int *out_dims_array,
                                       int *x_blocks, int *x_threads,
                                       int max_dim) {
  *x_blocks = 1;
  *x_threads = 1;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] == out_dims_array[i]) {
      *x_blocks *= x_dims_array[i];
    } else {
      *x_threads *= out_dims_array[i];
    }
  }
}

inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
                                               int *x_trans_indexs,
                                               const int max_dim,
                                               const int x_one_size) {
  int diff = max_dim - x_one_size;
  std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
  int p = 0;
  int q = diff;
  for (int i = 0; i < max_dim; ++i) {
    if (q < max_dim && i == x_trans_indexs[q]) {
      ++q;
    } else {
      x_trans_indexs[p++] = i;
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP>
__global__ void CommonGradBroadcastCUDAKernel(
    const int *x_strides_array, const int *y_strides_array,
    const int *out_dims_array, const int *y_strides_order,
    const int *y_dims_order, const T *x, const T *y, const T *out,
    const T *dout, T *dx, int out_size, int max_dim, int thread_num,
    DX_OP dx_op) {
  T val(0);
  int i = blockIdx.x;
  int tid = threadIdx.x;
  for (int j = tid; j < thread_num; j += blockDim.x) {
    const int X_index = i * thread_num + j;
    int out_index = X_index;
    int C_index = 0;
    int B_index = i * thread_num + j;
    int remainder = 0;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
      C_index += remainder * y_strides_order[d];
    }
    int x_index = 0;
    int y_index = 0;
    int C_index_val = C_index;
#pragma unroll
    for (int d = max_dim - 1; d >= 0; --d) {
      GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
      x_index += remainder * x_strides_array[d];
      y_index += remainder * y_strides_array[d];
    }
    out_index = C_index;
    val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
  }
  val = paddle::platform::reduceSum(val, tid, thread_num);
  if (threadIdx.x == 0) {
    dx[i] = val;
  }
}

template <typename T, typename DX_OP, typename DY_OP>
void CommonGradBroadcastCUDA(
    const framework::Tensor &x, const framework::Tensor &y,
    const framework::Tensor &out, const framework::Tensor &dout,
    framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
    int *y_dims_array, int *out_dims_array, int max_dim,
    const platform::CUDADeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
  const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
  auto cplace = platform::CPUPlace();
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  const T *out_data = out.data<T>();
  const T *dout_data = dout.data<T>();
  T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
  T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());

  std::vector<int> x_one_indexs;
  std::vector<int> y_one_indexs;
  for (int i = 0; i < max_dim; i++) {
    if (x_dims_array[i] != y_dims_array[i]) {
      if (x_dims_array[i] == 1) {
        x_one_indexs.push_back(i);
      }
      if (y_dims_array[i] == 1) {
        y_one_indexs.push_back(i);
      }
    }
  }

  std::vector<int> x_trans_indexs(max_dim);
  std::vector<int> y_trans_indexs(max_dim);
  ComputeBroadcastTranspositionArray(x_one_indexs.data(), x_trans_indexs.data(),
                                     max_dim, x_one_indexs.size());
  ComputeBroadcastTranspositionArray(y_one_indexs.data(), y_trans_indexs.data(),
                                     max_dim, y_one_indexs.size());

  // compute array stride for cuda kernel;
  // e.g. x.dims=[2,3,4], x_stride=[12,4,1]
  std::vector<int> x_strides_array(max_dim);
  std::vector<int> y_strides_array(max_dim);
  std::vector<int> out_strides_array(max_dim);
  int x_stride = 1;
  int y_stride = 1;
  int z_stride = 1;
  for (int i = max_dim - 1; i >= 0; i--) {
    x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
    y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
    out_strides_array[i] = z_stride;
    x_stride *= x_dims_array[i];
    y_stride *= y_dims_array[i];
    z_stride *= out_dims_array[i];
  }

  std::vector<int> x_strides_order(max_dim);
  std::vector<int> y_strides_order(max_dim);
  std::vector<int> x_dims_order(max_dim);
  std::vector<int> y_dims_order(max_dim);
  for (int i = 0; i < max_dim; ++i) {
    x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
    y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
    x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
    y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
  }

  int x_blocks = 0;
  int x_threads = 0;
  ComputeBroadcastKernelSize(x_dims_array, out_dims_array, &x_blocks,
                             &x_threads, max_dim);
  int y_blocks = 0;
  int y_threads = 0;
  ComputeBroadcastKernelSize(y_dims_array, out_dims_array, &y_blocks,
                             &y_threads, max_dim);

  int bytes = max_dim * sizeof(int);
  auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *x_strides_array_gpu =
      reinterpret_cast<int *>(x_strides_array_tmp->ptr());
  memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
               bytes, ctx.stream());

  auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
  int *y_strides_array_gpu =
      reinterpret_cast<int *>(y_strides_array_tmp->ptr());
  memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
               bytes, ctx.stream());

  auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
  int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
  memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
               ctx.stream());

  const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
                                       1, std::multiplies<int>());
  int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
  int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
  if (dx) {
    auto x_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *x_strides_order_gpu =
        reinterpret_cast<int *>(x_strides_order_tmp->ptr());
    memory::Copy(gplace, x_strides_order_gpu, cplace, x_strides_order.data(),
                 bytes, ctx.stream());

    auto x_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
    memory::Copy(gplace, x_dims_order_gpu, cplace, x_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DX_OP><<<x_blocks, x_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        x_strides_order_gpu, x_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dx_data, out_size, max_dim, x_threads, dx_op);
  }
  if (dy) {
    auto y_strides_order_tmp = memory::Alloc(ctx, bytes);
    int *y_strides_order_gpu =
        reinterpret_cast<int *>(y_strides_order_tmp->ptr());
    memory::Copy(gplace, y_strides_order_gpu, cplace, y_strides_order.data(),
                 bytes, ctx.stream());

    auto y_dims_order_tmp = memory::Alloc(ctx, bytes);
    int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
    memory::Copy(gplace, y_dims_order_gpu, cplace, y_dims_order.data(), bytes,
                 ctx.stream());
    CommonGradBroadcastCUDAKernel<
        T, DY_OP><<<y_blocks, y_block_size, 0, ctx.stream()>>>(
        x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
        y_strides_order_gpu, y_dims_order_gpu, x_data, y_data, out_data,
        dout_data, dy_data, out_size, max_dim, y_threads, dy_op);
  }
}

#endif  // __NVCC__

509
inline framework::DDim trim_trailing_singular_dims(
510
    const framework::DDim &dims) {
511
  // Remove trailing dimensions of size 1 for y
512
  auto actual_dims_size = dims.size();
513
  for (; actual_dims_size != 0; --actual_dims_size) {
514
    if (dims[actual_dims_size - 1] != 1) break;
515
  }
516
  if (actual_dims_size == dims.size()) return dims;
517 518 519 520
  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
521
  }
522 523 524
  if (trim_dims.size() == 0) {
    return framework::DDim(framework::make_dim());
  }
525 526
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
527 528
}

Q
QI JUN 已提交
529
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
530
class RowwiseTransformIterator;
531

Q
QI JUN 已提交
532
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
533
class MidWiseTransformIterator;
C
chengduoZH 已提交
534

D
dzhwinter 已提交
535
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
C
chengduoZH 已提交
536
template <typename T>
D
dzhwinter 已提交
537 538 539
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
540
 public:
541
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
C
chengduoZH 已提交
542

543
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
544
    ++i_;
C
chengduoZH 已提交
545 546 547
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
548 549 550
    return *this;
  }

P
peizhilin 已提交
551
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
552
    while (n-- > 0) {
P
peizhilin 已提交
553 554 555 556 557 558 559 560 561
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

562 563
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
564
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
565 566
  }

567 568
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
569
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
570 571
  }

572
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
573

C
chengduoZH 已提交
574
 private:
575
  const T *ptr_;
C
chengduoZH 已提交
576
  int i_;
C
chengduoZH 已提交
577
  int64_t n_;
C
chengduoZH 已提交
578 579 580
};

template <typename T>
D
dzhwinter 已提交
581 582 583
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
                           T *, T &> {
C
chengduoZH 已提交
584
 public:
585
  MidWiseTransformIterator(const T *ptr, int n, int post)
C
chengduoZH 已提交
586 587
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

588
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
589
    ++j_;
C
chengduoZH 已提交
590 591
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
592
      j_ = 0;
C
chengduoZH 已提交
593 594 595
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
596
    }
C
chengduoZH 已提交
597 598 599
    return *this;
  }

P
peizhilin 已提交
600
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
P
peizhilin 已提交
601
    while (n-- > 0) {
P
peizhilin 已提交
602 603 604 605 606 607 608 609 610 611 612 613
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

614 615
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
616
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
617 618
  }

619 620
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
621
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
622 623
  }

624
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
625

C
chengduoZH 已提交
626
 private:
627
  const T *ptr_;
C
refine  
chengduoZH 已提交
628
  int64_t i_;
C
chengduoZH 已提交
629 630
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
631
  int64_t post_;
C
chengduoZH 已提交
632 633
};

C
chengduoZH 已提交
634 635
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
636
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
637
    : public thrust::iterator_adaptor<
638
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
639 640
 public:
  typedef thrust::iterator_adaptor<
641
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
642
      super_t;
643
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
644
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
645 646 647 648
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
649
  const T *begin_;
C
chengduoZH 已提交
650
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
651 652 653 654 655
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
656
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
657
    : public thrust::iterator_adaptor<
658
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
659 660
 public:
  typedef thrust::iterator_adaptor<
661
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
662
      super_t;
663
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
664
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
665 666 667 668 669
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
670
  const T *begin_;
C
chengduoZH 已提交
671
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
672 673 674 675 676
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

677 678
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
679 680
class TransformFunctor {
 public:
681
  TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
682 683
                   framework::Tensor *z, const DeviceContext &ctx, Functor func,
                   const bool is_xsize_larger = true)
C
chengduoZH 已提交
684 685
      : x_(x->data<T>()),
        y_(y->data<T>()),
686
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
687 688
        nx_(x->numel()),
        ctx_(ctx),
689 690 691 692 693 694
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y->numel();
    }
  }
C
chengduoZH 已提交
695 696

  inline void Run() const {
Q
QI JUN 已提交
697
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
698
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
699 700 701
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
702
    platform::Transform<DeviceContext> trans;
703 704 705 706 707 708 709
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n), z_, func_);
    }
C
chengduoZH 已提交
710 711 712
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
713
    platform::Transform<DeviceContext> trans;
714 715 716 717 718 719
    if (is_xsize_larger_) {
      trans(ctx_, x_, x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
    } else {
      trans(ctx_, y_, y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post), z_, func_);
720 721 722
    }
  }

C
chengduoZH 已提交
723
 private:
724 725 726
  const T *x_;
  const T *y_;
  OutType *z_;
C
chengduoZH 已提交
727
  int64_t nx_;
728
  const DeviceContext &ctx_;
C
chengduoZH 已提交
729
  Functor func_;
730
  bool is_xsize_larger_;
C
chengduoZH 已提交
731 732
};

Y
Yu Yang 已提交
733 734
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
735 736 737 738
  const T *x_;
  const T *y_;
  const T *out_;
  const T *dout_;
Y
Yu Yang 已提交
739 740 741 742 743 744

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
745
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
746 747 748 749 750
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
751 752
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
753 754 755
};

template <typename T, typename DX_OP, typename DY_OP>
756
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
757 758
                                      const T *dout, int h, int w,
                                      bool is_xsize_larger, DX_OP dx_op,
759
                                      DY_OP dy_op, T *dx, T *dy) {
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
  if (is_xsize_larger) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int x_offset = i * w + j;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
Y
Yu Yang 已提交
776
      }
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int y_offset = i * w + j;
        if (dy != nullptr) {
          dy[y_offset] =
              dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx != nullptr) {
          T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          if (i == 0) {
            dx[j] = tmp;
          } else {
            dx[j] += tmp;
          }
Y
Yu Yang 已提交
793 794 795 796 797
        }
      }
    }
  }
}
798

D
dzhwinter 已提交
799
#ifdef __NVCC__
Y
Yu Yang 已提交
800 801
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
802
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
803
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
804 805 806
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
807
  T val(0);
808 809 810 811 812 813 814 815 816 817 818
  if (is_xsize_larger) {
    do {
      int x_offset = i * w + j;
      if (dx) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);
Y
Yu Yang 已提交
819 820

    if (dy) {
821 822 823 824 825
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
Y
Yu Yang 已提交
826
    }
827 828 829 830 831 832 833 834 835 836 837
  } else {  // x.dims < y.dims, broadcast for x.
    do {
      int y_offset = i * w + j;
      if (dy) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      if (dx) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }
      i += ELEMWISE_MAX_BLOCK_DIM;
    } while (i < h);
Y
Yu Yang 已提交
838

839 840 841 842 843 844
    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
Y
Yu Yang 已提交
845 846 847 848
    }
  }
}

849 850 851 852 853 854 855 856
#define BLOCK_X 32
#define BLOCK_Y 32

// suppose use 2D block is fast because more parallel
// and memory coalesced
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
857
    bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
858 859 860 861 862 863 864 865 866
  __shared__ T sdata[BLOCK_Y][BLOCK_X + 1];

  T val(0);
  size_t width_stride = gridDim.x * blockDim.x;
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t full_width =
      (w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
  size_t full_height =
      (h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  if (is_xsize_larger) {
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int x_offset = n * w + m;
        if (dx && m < w && n < h) {
          dx[x_offset] =
              dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
        }
        if (dy) {
          if (m < w && n < h) {
            T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
883 884
      }
      if (dy) {
885 886 887 888 889 890
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
891 892
        }
        __syncthreads();
893 894 895
        if (threadIdx.y == 0 && m < w) {
          dy[m] = sdata[0][threadIdx.x];
        }
896 897
      }
    }
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
  } else {  // x.dims < y.dims, broadcast for x.
    for (int m = idx; m < full_width; m += width_stride) {
      sdata[threadIdx.y][threadIdx.x] = 0;
      for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
        int y_offset = n * w + m;
        if (dy && m < w && n < h) {
          dy[y_offset] =
              dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
        }
        if (dx) {
          if (m < w && n < h) {
            T val = dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
            sdata[threadIdx.y][threadIdx.x] += val;
          }
          __syncthreads();
        }
914
      }
915 916 917 918 919 920 921 922 923 924 925 926
      if (dx) {
        T my_val = sdata[threadIdx.x][threadIdx.y];
        for (int i = warpSize >> 1; i > 0; i >>= 1)
          my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
        __syncthreads();
        if ((threadIdx.x == 0)) {
          sdata[0][threadIdx.y] = my_val;
        }
        __syncthreads();
        if (threadIdx.y == 0 && m < w) {
          dx[m] = sdata[0][threadIdx.x];
        }
927 928 929 930 931
      }
    }
  }
}

Y
Yu Yang 已提交
932
template <typename T, typename DX_OP, typename DY_OP>
933 934
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
935 936
                                       int h, int w, bool is_xsize_larger,
                                       DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
937 938 939 940 941 942
  // For small case use 1D block
  constexpr int half_walf = 16;
  if (w < half_walf || h < half_walf) {
    int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
    int gird_size = w;
    ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
943
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
944 945 946 947 948
  } else {
    // suppose perfoemance improves with h increased.
    dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
    int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
    FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
949
        x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
950
  }
Y
Yu Yang 已提交
951 952 953 954 955
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
956 957
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int pre, int n, int post,
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
                                      bool is_xsize_larger, DX_OP dx_op,
                                      DY_OP dy_op, T *dx, T *dy) {
  if (is_xsize_larger) {
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int x_offset = i * n * post + j * post + k;
          if (dx != nullptr) {
            dx[x_offset] =
                dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          }
          if (dy != nullptr) {
            T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
            if (i == 0 && k == 0) {
              dy[j] = tmp;
            } else {
              dy[j] += tmp;
            }
          }
Y
Yu Yang 已提交
977
        }
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
      }
    }
  } else {  // x.dims < y.dims, broadcast for x.
    for (int i = 0; i < pre; ++i) {
      for (int j = 0; j < n; ++j) {
        for (int k = 0; k < post; ++k) {
          int y_offset = i * n * post + j * post + k;
          if (dy != nullptr) {
            dy[y_offset] =
                dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
          }
          if (dx != nullptr) {
            T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
            if (i == 0 && k == 0) {
              dx[j] = tmp;
            } else {
              dx[j] += tmp;
            }
Y
Yu Yang 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
1006
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
1007
    int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1008 1009 1010
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1011
  T val(0);
Y
Yu Yang 已提交
1012 1013
  int ttid = tid;

1014 1015 1016 1017 1018
  if (is_xsize_larger) {
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1019

1020
      int x_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      if (dy != nullptr) {
        val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
Y
Yu Yang 已提交
1031 1032
    }

1033 1034 1035 1036 1037 1038 1039
    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
Y
Yu Yang 已提交
1040
    }
1041 1042 1043 1044 1045
  } else {  // x.dims < y.dims, broadcast for x.
    while (true) {
      int i = ttid / post;
      int k = ttid % post;
      if (i >= pre) break;
Y
Yu Yang 已提交
1046

1047
      int y_offset = i * n * post + j * post + k;
Y
Yu Yang 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      if (dy != nullptr) {
        dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      if (dx != nullptr) {
        val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
      }

      ttid += ELEMWISE_MAX_BLOCK_DIM;
    }

    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
Y
Yu Yang 已提交
1067 1068 1069 1070 1071
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
1072 1073
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
1074 1075
                                       int pre, int n, int post,
                                       bool is_xsize_larger, DX_OP dx_op,
1076
                                       DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
1077 1078
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
1079
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
1080
      x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
1081 1082 1083 1084
}

#endif

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void CommonElementwiseBroadcastBackward(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  // for inplace strategy. memset will make dx and dout clear and get wrong
  // result.
  if (dx && dout.Holder() == dx->Holder()) {
    dx->clear();
    dx->mutable_data<T>(x_dims, ctx.GetPlace());
1106 1107
  }

1108
  if (platform::is_gpu_place(ctx.GetPlace())) {
1109
#ifdef __NVCC__
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    CommonGradBroadcastCUDA<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), dx_op,
        dy_op);
#endif
  } else {
    CommonGradBroadcastCPU<T, DX_OP, DY_OP>(
        x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), dx_op,
        dy_op);
1122 1123 1124
  }
}

1125 1126
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
1127 1128 1129 1130 1131
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1132
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
1133
#if !defined(_WIN32)
1134 1135
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
1136 1137 1138 1139
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
1140 1141 1142 1143 1144 1145 1146 1147
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
1148 1149
    const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
    const framework::DDim &y_dims, const framework::Tensor &x,
1150 1151 1152
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
1153 1154 1155 1156 1157 1158
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(axis, 0, "Axis should be in range [0, %d)", axis);
  PADDLE_ENFORCE_LT(axis, max_dim, "Axis should be in range [0, %d)", axis);

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
  // special case for common backward implementation.
  if (is_run_common_broadcast) {
    CommonElementwiseBroadcastBackward<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    return;
  }
  if (post == 1) {
1183 1184 1185 1186
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1187 1188
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, is_xsize_larger,
          dx_op, dy_op,
1189 1190 1191 1192 1193
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
1194
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
1195
          is_xsize_larger, dx_op, dy_op,
1196
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1197 1198 1199 1200 1201 1202 1203
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
1204 1205 1206
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          is_xsize_larger, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
1207 1208 1209 1210 1211
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
1212
          is_xsize_larger, dx_op, dy_op,
1213 1214 1215 1216 1217 1218
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
void CommonElementwiseBroadcastForward(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, framework::Tensor *z,
    const framework::DDim &x_dims, const framework::DDim &y_dims, Functor func,
    int axis, const bool is_xsize_larger = true) {
  int max_dim = std::max(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(axis, 0, "Axis should be in range [0, %d)", axis);
  PADDLE_ENFORCE_LT(axis, max_dim, "Axis should be in range [0, %d)", axis);
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                         y_dims_array.data(), out_dims_array.data(), max_dim,
                         axis);

  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
    CommonForwardBroadcastCUDA<Functor, T>(
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CUDADeviceContext>(), func,
        is_xsize_larger);
#endif
  } else {
    CommonForwardBroadcastCPU<Functor, T, OutType>(
        x, y, z, x_dims_array.data(), y_dims_array.data(),
        out_dims_array.data(), max_dim,
        ctx.template device_context<platform::CPUDeviceContext>(), func,
        is_xsize_larger);
  }
}

Y
Yu Yang 已提交
1254
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1255 1256 1257 1258 1259
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
1260
                         DX_OP dx_op, DY_OP dy_op) {
1261 1262
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
1263
  if (x.dims() == y.dims()) {
1264 1265
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
1266
  } else {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
1277 1278 1279 1280 1281 1282
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
1283
                                 DX_OP dx_op, DY_OP dy_op) {
1284 1285 1286
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
1287
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
1288
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1289
  } else {
1290 1291
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
1292 1293
  }
}
F
fengjiayi 已提交
1294

1295 1296
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
1297 1298 1299 1300
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
F
fengjiayi 已提交
1301
  auto x_dims = x->dims();
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  auto y_dims = y->dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
      x, y, z, ctx.template device_context<DeviceContext>(), func,
      is_xsize_larger);
  if (x_dims == y_dims) {
F
fengjiayi 已提交
1313 1314 1315 1316
    functor.Run();
    return;
  }

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(axis, 0, "Axis should be in range [0, %d)", axis);
  PADDLE_ENFORCE_LT(axis, max_dim, "Axis should be in range [0, %d)", axis);

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
                 &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, DeviceContext, T, OutType>(
        ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
1339 1340
    return;
  }
F
fengjiayi 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
  int j = blockIdx.x;
  int i = threadIdx.x;

  while (i < h) {
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CUDA(cudaStream_t stream, const T *x,
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CUDA(cudaStream_t stream, const T *x,
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

1604 1605
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
C
chengduo 已提交
1658 1659
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut>
1660 1661
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
1662 1663 1664 1665 1666 1667 1668
    T x_val = x_[i];
    T y_val = y_[i];
    T out_val = out_[i];
    T dout_val = dout_[i];
    T intermediate_out_val = UseIntermediateOut
                                 ? intermediate_out_[i]
                                 : dx_op_.GetIntermediateOut(x_val, y_val);
1669
    if (dx_ != nullptr) {
1670 1671
      dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
1672 1673
    }
    if (dy_ != nullptr) {
1674 1675
      dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
                                         out_val, dout_val);
C
chengduo 已提交
1676 1677
    }
    if (dintermediate_ != nullptr) {
1678 1679
      dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
          x_val, intermediate_out_val, out_val, dout_val);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
C
chengduo 已提交
1690
  DIntermediate_OP dintermediate_op_;
1691 1692
  T *dx_;
  T *dy_;
C
chengduo 已提交
1693
  T *dintermediate_;
1694 1695 1696
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
1697
          typename DIntermediate_OP, bool UseIntermediateOut>
1698 1699 1700 1701 1702
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
1703 1704 1705
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
1706 1707 1708 1709
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
  for_range(
C
chengduo 已提交
1710 1711
      FusedElemwiseAndActGradNoBroadcast<T, DX_OP, DY_OP, DIntermediate_OP,
                                         UseIntermediateOut>{
1712 1713
          x->data<T>(), y->data<T>(),
          intermediate_out ? intermediate_out->data<T>() : nullptr,
C
chengduo 已提交
1714
          out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
1715
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
1716 1717 1718
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace())});
1719 1720
}

C
chengduo 已提交
1721 1722 1723 1724 1725 1726 1727
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
1743 1744 1745 1746 1747
                    ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
C
chengduo 已提交
1761 1762 1763 1764 1765
                    ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                               intermediate_out[tmp_out_idx],
                                               out[offset], dout[offset])
                    : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                      dout[offset]);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
C
chengduo 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
      if (d_intermediate != nullptr) {
        T tmp = UseIntermediateOut
                    ? dintermediate_op.UseIntermediateOut(
                          x[x_idx], intermediate_out[tmp_out_idx], out[offset],
                          dout[offset])
                    : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                 out[offset], dout[i]);
        if (SameShapeOfIntermediateOutAndOut) {
          d_intermediate[tmp_out_idx] = tmp;
        } else {
          if (i == 0) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            d_intermediate[tmp_out_idx] += tmp;
          }
        }
      }
1793 1794 1795 1796
    }
  }
}

C
chengduo 已提交
1797 1798 1799 1800 1801 1802 1803
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
1820 1821 1822 1823 1824
                      ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dx_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
          T tmp = UseIntermediateOut
C
chengduo 已提交
1838 1839 1840 1841 1842
                      ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                                 intermediate_out[tmp_out_idx],
                                                 out[offset], dout[offset])
                      : dy_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                        dout[offset]);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
C
chengduo 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
        if (d_intermediate != nullptr) {
          T tmp = UseIntermediateOut
                      ? dintermediate_op.UseIntermediateOut(
                            x[x_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                      : dintermediate_op.Recompute(x[x_idx], y[y_idx],
                                                   out[offset], dout[i]);
          if (SameShapeOfIntermediateOutAndOut) {
            d_intermediate[tmp_out_idx] = tmp;
          } else {
            if (i == 0) {
              d_intermediate[tmp_out_idx] = tmp;
            } else {
              d_intermediate[tmp_out_idx] += tmp;
            }
          }
        }
1870 1871 1872 1873 1874 1875
      }
    }
  }
}

#ifdef __NVCC__
C
chengduo 已提交
1876 1877 1878
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
1879 1880
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
1881 1882
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1883 1884 1885
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
C
chengduo 已提交
1886
  T val(0), inter_val(0);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
  int64_t tmp_out_idx, x_idx, y_idx;

  do {
    int offset = i * w + j;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
1901 1902 1903 1904 1905 1906
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1907 1908 1909 1910 1911 1912 1913 1914

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
1915 1916 1917 1918 1919 1920
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
1921 1922 1923 1924 1925 1926
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
1940 1941 1942 1943

    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

C
chengduo 已提交
1944
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
1960 1961 1962 1963 1964 1965 1966 1967
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
1968 1969
}

C
chengduo 已提交
1970 1971 1972 1973 1974 1975 1976
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1977 1978 1979
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
C
chengduo 已提交
1980
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
1981
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
1982 1983
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
      dx, dy, d_intermediate);
1984 1985
}

C
chengduo 已提交
1986 1987 1988
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
1989 1990
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
C
chengduo 已提交
1991 1992
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
1993 1994 1995
  int tid = threadIdx.x;
  int j = blockIdx.x;

C
chengduo 已提交
1996
  T val(0), inter_val(0);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
C
chengduo 已提交
2015 2016 2017 2018 2019 2020
      T tmp =
          UseIntermediateOut
              ? dx_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dx_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2021 2022 2023 2024 2025 2026 2027 2028

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
C
chengduo 已提交
2029 2030 2031 2032 2033 2034
      T tmp =
          UseIntermediateOut
              ? dy_op.UseIntermediateOut(x[x_idx], y[y_idx],
                                         intermediate_out[tmp_out_idx],
                                         out[offset], dout[offset])
              : dy_op.Recompute(x[x_idx], y[y_idx], out[offset], dout[offset]);
2035 2036 2037 2038 2039 2040
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }
C
chengduo 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
    if (d_intermediate != nullptr) {
      T tmp = UseIntermediateOut
                  ? dintermediate_op.UseIntermediateOut(
                        y[y_idx], intermediate_out[tmp_out_idx], out[offset],
                        dout[offset])
                  : dintermediate_op.Recompute(x[x_idx], y[y_idx], out[offset],
                                               dout[offset]);
      if (SameShapeOfIntermediateOutAndOut) {
        d_intermediate[tmp_out_idx] = tmp;
      } else {
        inter_val += tmp;
      }
    }
2054 2055 2056
    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

C
chengduo 已提交
2057 2058
  int h = pre * post;
  h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
  if (BcastY) {
    if (dy) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
C
chengduo 已提交
2074 2075 2076 2077 2078 2079 2080 2081
  if (!SameShapeOfIntermediateOutAndOut) {
    if (d_intermediate) {
      inter_val = paddle::platform::reduceSum(inter_val, tid, h);
      if (threadIdx.x == 0) {
        d_intermediate[j] = inter_val;
      }
    }
  }
2082 2083
}

C
chengduo 已提交
2084 2085 2086
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
2087 2088 2089
static void FusedElemwiseAndActGradBroadcast2CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
C
chengduo 已提交
2090 2091
    DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
    T *dintermediate) {
2092 2093 2094
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
C
chengduo 已提交
2095
      T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
2096
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
C
chengduo 已提交
2097 2098
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
      dintermediate_op, dx, dy, dintermediate);
2099 2100 2101 2102
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2103
          typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
2104 2105 2106 2107 2108 2109
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
C
chengduo 已提交
2110 2111 2112
    framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2113 2114 2115 2116
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

2117 2118
  int pre, n, post, is_run_common_broadcast;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
2119 2120 2121 2122 2123
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
2124 2125
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2126 2127 2128 2129
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2130
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2131
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2132 2133 2134
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2135 2136
#endif
    } else {
C
chengduo 已提交
2137 2138
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2139 2140 2141
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
C
chengduo 已提交
2142
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
2143
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2144 2145 2146
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2147 2148 2149 2150
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
C
chengduo 已提交
2151 2152
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
                                            UseIntermediateOut, BcastY,
2153 2154 2155 2156 2157
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2158
          dintermediate_op,
2159
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2160 2161 2162
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2163 2164
#endif
    } else {
C
chengduo 已提交
2165 2166
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
                                           UseIntermediateOut, BcastY,
2167 2168 2169 2170
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
C
chengduo 已提交
2171
          dintermediate_op,
2172
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
C
chengduo 已提交
2173 2174 2175
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
          dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
                                                   ctx.GetPlace()));
2176 2177 2178 2179 2180
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
C
chengduo 已提交
2181 2182
          typename DIntermediate_OP, bool UseIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
2183 2184 2185 2186
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
C
chengduo 已提交
2187 2188 2189
    int axis, framework::Tensor *dx, framework::Tensor *dy,
    framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
    DIntermediate_OP dintermediate_op) {
2190 2191 2192 2193 2194 2195
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out, "intermediate_out should not be nullptr");
  }
  if (x_dim == y_dim) {
C
chengduo 已提交
2196 2197
    FusedElemwiseAndActGradComputeNoBroadcast<
        DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
2198
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
C
chengduo 已提交
2199
        dintermediate, dx_op, dy_op, dintermediate_op);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2215 2216 2217 2218
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2219 2220
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
C
chengduo 已提交
2221 2222 2223 2224
          DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
          false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
          dintermediate, dx_op, dy_op, dintermediate_op);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out,
C
chengduo 已提交
2239
                   "The save_intermediate_out is opened, "
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
                   "intermediate_out should not be nullptr.");
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
2252
    bool bcast_y = x.numel() >= y.numel();
2253 2254 2255 2256
    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
2257 2258
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
2270 2271
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
2284 2285 2286 2287 2288 2289 2290 2291

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
2292 2293
    auto &dev_ctx = ctx.template device_context<DeviceContext>();
    *ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
2294 2295 2296 2297 2298 2299
    math::SetConstant<DeviceContext, T> set_zero;
    set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
             static_cast<T>(0));
  }
}

2300 2301
}  // namespace operators
}  // namespace paddle