ftrl_op.cc 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
kavyasrinet 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/ftrl_op.h"
K
kavyasrinet 已提交
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
K
kavyasrinet 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
class FTRLOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("SquaredAccumulator"),
                   "Input(SquaredAccumulator) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LinearAccumulator"),
                   "Input(LinearAccumulator) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of FTRL should not be null.");
C
chengduo 已提交
37 38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Grad").front(), ctx->GetInputsVarType("Grad").front());
K
kavyasrinet 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("SquaredAccumOut"),
                   "Output(SquaredAccumOut) of FTRL should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("LinearAccumOut"),
                   "Output(LinearAccumOut) of FTRL should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"),
                      "Two input of FTRL Op's dimension must be same.");

    auto lr_dim = ctx->GetInputDim("LearningRate");
60 61 62 63 64
    PADDLE_ENFORCE_NE(framework::product(lr_dim), 0,
                      "Maybe the Input variable LearningRate has not "
                      "been initialized. You may need to confirm "
                      "if you put exe.run(startup_program) "
                      "after optimizer.minimize function.");
K
kavyasrinet 已提交
65 66 67 68 69 70 71
    PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
                      "Learning Rate should be a scalar.");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("SquaredAccumOut", param_dim);
    ctx->SetOutputDim("LinearAccumOut", param_dim);
  }
D
dzhwinter 已提交
72 73
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
74 75
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
D
dzhwinter 已提交
76 77
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
K
kavyasrinet 已提交
78 79 80 81
};

class FTRLOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
82
  void Make() override {
K
kavyasrinet 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    AddInput("Param",
             "(Tensor, default Tensor<float>) "
             "Input parameter value that has to be updated.");
    AddInput("SquaredAccumulator",
             "(Tensor, default Tensor<float>) "
             "Accumulator that accumulates squared gradients.");
    AddInput("LinearAccumulator",
             "(Tensor, default Tensor<float>) "
             "Accumulator that accumulates linear gradients.");
    AddInput("Grad",
             "(Tensor, default Tensor<float>) "
             "Input gradient of the parameter.");
    AddInput("LearningRate",
             "(Tensor, default Tensor<float>) "
             "The learning rate should be a tensor of size 1.");

    AddOutput("ParamOut", "(Tensor) Output updated parameter value.");
    AddOutput("SquaredAccumOut",
              "(Tensor) Output accumulated squared"
              " gradients.");
    AddOutput("LinearAccumOut",
              "(Tensor) Output accumulated linear"
              " gradients.");

    AddAttr<float>("l1",
                   "(float, default 0.0) "
                   "L1 regularization strength.")
        .SetDefault(0.0f);
    AddAttr<float>("l2",
                   "(float, default 0.0) "
                   "L2 regularization strength.")
        .SetDefault(0.0f);
    AddAttr<float>("lr_power",
                   "(float, default -0.5f) "
                   "Learning Rate Power.")
        .SetDefault(-0.5f);
    AddComment(R"DOC(
FTRL (Follow The Regularized Leader) Operator.

Optimizer that implements the FTRL algorithm:

$$
new\_accum = squared\_accum + grad^2 \\
if (lr\_power == -0.5) {
   linear\_accum += grad - (\surd(new\_accum) - \surd(squared\_accum)) /
                   (learning\_rate * param) \\
} else {
   linear\_accum += grad -
                  (new\_accum^{-lr\_power} - accum^{-lr\_power}) /
                  (learning\_rate * param) \\
}

x = (l1 * sign(linear\_accum) - linear\_accum)
if (lr\_power == -0.5) {
   y = \frac{\surd(new\_accum)}{learning\_rate} + (2 * l2) \\
   pre\_shrink = \frac{x}{y} \\
   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
} else {
   y = \frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) \\
   pre\_shrink = \frac{x}{y} \\
   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\
}
squared\_accum += grad^2;
$$

The paper that proposed Follow The Regularized Leader (FTRL):
(https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker);
Q
QI JUN 已提交
159 160
REGISTER_OP_CPU_KERNEL(
    ftrl, ops::FTRLOpKernel<paddle::platform::CPUDeviceContext, float>);