test_program.py 4.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
Y
Yu Yang 已提交
16
import unittest
17

18 19
from paddle.fluid.framework import Program, default_main_program, program_guard, grad_var_name
import paddle.fluid.layers as layers
20
import paddle.fluid as fluid
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23
main_program = default_main_program()

Y
Yu Yang 已提交
24 25 26

class TestProgram(unittest.TestCase):
    def test_program(self):
Y
Yu Yang 已提交
27
        b = main_program.current_block()
Y
Yu Yang 已提交
28 29 30
        self.assertEqual(-1, b.parent_idx)
        self.assertEqual(0, b.idx)

Y
Yu Yang 已提交
31
        b = main_program.create_block()
Y
Yu Yang 已提交
32 33 34
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
35
        b = main_program.create_block()
Y
Yu Yang 已提交
36 37 38
        self.assertEqual(2, b.idx)
        self.assertEqual(1, b.parent_idx)

Y
Yu Yang 已提交
39
        main_program.rollback()
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41
        b = main_program.current_block()
Y
Yu Yang 已提交
42 43 44
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
45
        b = main_program.create_block()
Y
Yu Yang 已提交
46 47 48
        self.assertEqual(3, b.idx)
        self.assertEqual(1, b.parent_idx)

Y
Yu Yang 已提交
49 50
        main_program.rollback()
        b = main_program.current_block()
Y
Yu Yang 已提交
51 52 53
        self.assertEqual(1, b.idx)
        self.assertEqual(0, b.parent_idx)

Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def test_program_clone(self):
        prog = Program()

        x = prog.global_block().create_var(
            name='X', shape=[1000, 784], dtype='float32')

        y = prog.global_block().create_var(
            name='Y', shape=[784, 100], dtype='float32')
        out = prog.global_block().create_var(name='Out', dtype='float32')
        prog.global_block().append_op(
            type="mul", inputs={'X': [x],
                                'Y': [y]}, outputs={'Out': [out]})

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
69 70
        print(prog)
        print(prog.clone())
Y
Yu Yang 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    def test_parse_program_from_string(self):
        prog = Program()

        x = prog.global_block().create_var(
            name='X', shape=[1000, 784], dtype='float32')

        y = prog.global_block().create_var(
            name='Y', shape=[784, 100], dtype='float32')
        out = prog.global_block().create_var(name='Out', dtype='float32')
        prog.global_block().append_op(
            type="mul", inputs={'X': [x],
                                'Y': [y]}, outputs={'Out': [out]})

        binary_str = prog.desc.serialize_to_string()
        prog_restored = Program.parse_from_string(binary_str)

88 89
        print(prog)
        print(prog_restored)
90

91 92 93
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
94 95 96 97
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)
98 99 100 101

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def test_program_inference_optimize(self):
        def net():
            reader = fluid.layers.py_reader(
                capacity=10,
                shapes=[[-1, 10], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'],
                use_double_buffer=True)
            in_data, label = fluid.layers.read_file(reader)
            predict_label = fluid.layers.fc(in_data, size=2, act='softmax')
            loss = fluid.layers.mean(
                fluid.layers.cross_entropy(
                    input=predict_label, label=label))

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)

        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            net()
        no_read_program = main_program.inference_optimize()
        keep_read_program = main_program.inference_optimize(
            export_for_deployment=False)
        no_read_ops = no_read_program.global_block().ops
        keep_read_ops = keep_read_program.global_block().ops
        self.assertEqual(len(keep_read_ops) - len(no_read_ops), 2)
        self.assertEqual(keep_read_ops[0].type, 'create_double_buffer_reader')
        self.assertEqual(keep_read_ops[1].type, 'read')

        for i in range(len(no_read_ops)):
            self.assertEqual(no_read_ops[i].type, keep_read_ops[i + 2].type)

Y
Yu Yang 已提交
135 136 137

if __name__ == '__main__':
    unittest.main()