test_maxout_op.py 5.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaox 已提交
17 18
import unittest
import numpy as np
19
import paddle
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
import paddle.nn.functional as F
23
from op_test import OpTest
24
from paddle.fluid.framework import _test_eager_guard
W
wanghaox 已提交
25

26 27
paddle.enable_static()
np.random.seed(1)
W
wanghaox 已提交
28

29 30 31 32 33 34 35 36

def maxout_forward_naive(x, groups, channel_axis):
    s0, s1, s2, s3 = x.shape
    if channel_axis == 1:
        return np.ndarray([s0, s1 // groups, groups, s2, s3], \
            buffer = x, dtype=x.dtype).max(axis=2)
    return np.ndarray([s0, s1, s2, s3 // groups, groups], \
        buffer = x, dtype=x.dtype).max(axis=4)
W
wanghaox 已提交
37 38 39


class TestMaxOutOp(OpTest):
40

W
wanghaox 已提交
41 42
    def setUp(self):
        self.op_type = "maxout"
43
        self.python_api = paddle.nn.functional.maxout
44 45 46 47 48 49 50 51
        self.dtype = 'float64'
        self.shape = [3, 6, 2, 4]
        self.groups = 2
        self.axis = 1
        self.set_attrs()

        x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out = maxout_forward_naive(x, self.groups, self.axis)
W
wanghaox 已提交
52

53
        self.inputs = {'X': x}
54
        self.attrs = {'groups': self.groups, 'axis': self.axis}
55
        self.outputs = {'Out': out}
W
wanghaox 已提交
56

57 58
    def set_attrs(self):
        pass
W
wanghaox 已提交
59 60

    def test_check_output(self):
61
        self.check_output(check_eager=True)
W
wanghaox 已提交
62 63

    def test_check_grad(self):
64
        self.check_grad(['X'], 'Out', check_eager=True)
W
wanghaox 已提交
65

66

67
class TestMaxOutOpAxis0(TestMaxOutOp):
68

69 70
    def set_attrs(self):
        self.axis = -1
71 72


73
class TestMaxOutOpAxis1(TestMaxOutOp):
74

75 76
    def set_attrs(self):
        self.axis = 3
77 78


79
class TestMaxOutOpFP32(TestMaxOutOp):
80

81 82
    def set_attrs(self):
        self.dtype = 'float32'
83 84


85
class TestMaxOutOpGroups(TestMaxOutOp):
86

87 88
    def set_attrs(self):
        self.groups = 3
89

W
wanghaox 已提交
90

91 92 93 94 95 96 97 98 99 100 101
class TestMaxoutAPI(unittest.TestCase):
    # test paddle.nn.Maxout, paddle.nn.functional.maxout
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
        self.groups = 2
        self.axis = 1
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
102
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            out1 = F.maxout(x, self.groups, self.axis)
            m = paddle.nn.Maxout(self.groups, self.axis)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.maxout(x, self.groups, self.axis)
        m = paddle.nn.Maxout(self.groups, self.axis)
        out2 = m(x)
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))

        out3 = F.maxout(x, self.groups, -1)
        out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
        self.assertTrue(np.allclose(out3_ref, out3.numpy()))
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()
W
wanghaox 已提交
141

142
    def test_errors(self):
143
        with paddle.static.program_guard(paddle.static.Program()):
144
            # The input type must be Variable.
145
            self.assertRaises(TypeError, F.maxout, 1)
146
            # The input dtype must be float16, float32, float64.
147 148 149
            x_int32 = paddle.fluid.data(name='x_int32',
                                        shape=[2, 4, 6, 8],
                                        dtype='int32')
150 151
            self.assertRaises(TypeError, F.maxout, x_int32)

152
            x_float32 = paddle.fluid.data(name='x_float32', shape=[2, 4, 6, 8])
153
            self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
154

155 156 157 158
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

159

W
wanghaox 已提交
160 161
if __name__ == '__main__':
    unittest.main()