hl_cuda_device.cc 23.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include <sys/time.h>
#include <string.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <mutex>
#include "hl_cuda.h"
#include "hl_cuda.ph"
#include "hl_thread.ph"
#include "hl_dso_loader.h"
#include "paddle/utils/Logging.h"

namespace dynload {

std::once_flag curand_dso_flag;
void* curand_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load curand routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
#ifdef PADDLE_USE_DSO
#define DYNAMIC_LOAD_CURAND_WRAP(__name)                           \
  struct DynLoad__##__name {                                       \
    template <typename... Args>                                    \
    curandStatus_t operator()(Args... args) {                      \
       typedef curandStatus_t (*curandFunc)(Args...);              \
       std::call_once(curand_dso_flag, GetCurandDsoHandle,         \
                      &curand_dso_handle);                         \
       void* p_##__name = dlsym(curand_dso_handle, #__name);       \
       return reinterpret_cast<curandFunc>(p_##__name)(args...);   \
    }                                                              \
  } __name;  /* struct DynLoad__##__name */
#else
#define DYNAMIC_LOAD_CURAND_WRAP(__name)                           \
  struct DynLoad__##__name {                                       \
    template <typename... Args>                                    \
    curandStatus_t operator()(Args... args) {                      \
       return __name(args...);                                     \
    }                                                              \
  } __name;  /* struct DynLoad__##__name */
#endif

/* include all needed curand functions in HPPL */
#define CURAND_RAND_ROUTINE_EACH(__macro)    \
  __macro(curandCreateGenerator)             \
  __macro(curandSetStream)                   \
  __macro(curandSetPseudoRandomGeneratorSeed)\
  __macro(curandGenerateUniform)             \
  __macro(curandGenerateUniformDouble)

CURAND_RAND_ROUTINE_EACH(DYNAMIC_LOAD_CURAND_WRAP)

#undef CURAND_RAND_ROUTINE_EACH
#undef DYNAMIC_LOAD_CURAND_WRAP

std::once_flag cudart_dso_flag;
void* cudart_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load cuda routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
#ifdef PADDLE_USE_DSO
#define DYNAMIC_LOAD_CUDART_WRAP(__name)                            \
  struct DynLoad__##__name {                                        \
    template <typename... Args>                                     \
    cudaError_t operator()(Args... args) {                          \
      typedef cudaError_t (*cudartFunc)(Args...);                   \
      std::call_once(cudart_dso_flag, GetCudartDsoHandle,           \
                     &cudart_dso_handle);                           \
      void* p_##__name = dlsym(cudart_dso_handle, #__name);         \
      return reinterpret_cast<cudartFunc>(p_##__name)(args...);     \
    }                                                               \
  } __name;  /* struct DynLoad__##__name */
#else
#define DYNAMIC_LOAD_CUDART_WRAP(__name)                            \
  struct DynLoad__##__name {                                        \
    template <typename... Args>                                     \
    cudaError_t operator()(Args... args) {                          \
      return __name(args...);                                       \
    }                                                               \
  } __name;  /* struct DynLoad__##__name */
#endif

#ifdef PADDLE_USE_DSO
  struct DynLoad__cudaGetErrorString {
    template <typename... Args>
    const char* operator()(Args... args) {
      typedef const char* (*cudaFunc)(Args...);
      std::call_once(cudart_dso_flag, GetCudartDsoHandle,
                     &cudart_dso_handle);
      void* p_func = dlsym(cudart_dso_handle, "cudaGetErrorString");
      return reinterpret_cast<cudaFunc>(p_func)(args...);
    }
  } cudaGetErrorString;  /* struct DynLoad__cudaGetErrorString */
#else
struct DynLoad__cudaGetErrorString {
  template <typename... Args>
  const char* operator()(Args... args) {
    return cudaGetErrorString(args...);
  }
} cudaGetErrorString;  /* struct DynLoad__cudaGetErrorString */
#endif

/* include all needed cuda functions in HPPL */
#define CUDA_ROUTINE_EACH(__macro)        \
  __macro(cudaMalloc)                     \
  __macro(cudaHostAlloc)                  \
  __macro(cudaFree)                       \
  __macro(cudaFreeHost)                   \
  __macro(cudaMemcpy)                     \
  __macro(cudaMemset)                     \
  __macro(cudaMemcpyAsync)                \
  __macro(cudaSetDevice)                  \
  __macro(cudaGetDevice)                  \
  __macro(cudaGetDeviceCount)             \
  __macro(cudaGetDeviceProperties)        \
  __macro(cudaDeviceSynchronize)          \
  __macro(cudaDeviceCanAccessPeer)        \
  __macro(cudaDeviceEnablePeerAccess)     \
  __macro(cudaStreamCreate)               \
  __macro(cudaStreamDestroy)              \
  __macro(cudaStreamSynchronize)          \
  __macro(cudaStreamWaitEvent)            \
  __macro(cudaEventCreate)                \
  __macro(cudaEventRecord)                \
  __macro(cudaEventQuery)                 \
  __macro(cudaEventDestroy)               \
  __macro(cudaEventSynchronize)           \
  __macro(cudaEventElapsedTime)           \
  __macro(cudaSetDeviceFlags)             \
  __macro(cudaGetLastError)               \
  __macro(cudaFuncSetCacheConfig)         \
  __macro(cudaRuntimeGetVersion)

CUDA_ROUTINE_EACH(DYNAMIC_LOAD_CUDART_WRAP)

#undef CUDA_ROUNTINE_EACH
#undef DYNAMIC_LOAD_CUDART_WRAP

}  /* namespace dynload */

/**
 * @brief   global resource.
 */
int                     g_system_device_num = 0;    /* system device number */
int                     device_num = 0;             /* use    device number */
hl_device_prop          *g_device;                  /* device info table */
__thread thread_device_resources *t_device;         /* device resources table */
int g_cuda_lib_version = 0;

/* number of global stream */
#define  NUMBER_OF_GLOBAL_STREAM    (HPPL_THREAD_STREAM_1)
/* number of thread stream */
#define  NUMBER_OF_THREAD_STREAM    (HPPL_STREAM_END - HPPL_THREAD_STREAM_1)
/* sizeof of device memory */
#define  HPPL_GPU_MEMORY_SIZE                (256*4)

/**
181
 * Check build-in cuda function using glog and it **does not**
Z
zhangjinchao01 已提交
182 183
 * support << operator for more details error info.
 */
184 185 186 187 188 189
#define CHECK_CUDA(cudaFunc)                               \
  do {                                                     \
    cudaError_t cudaStat = cudaFunc;                       \
    CHECK_EQ(cudaSuccess, cudaStat) << "Cuda Error: "      \
        << dynload::cudaGetErrorString(cudaStat);          \
  } while (0)
Z
zhangjinchao01 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

/**
 * @brief   thread resource.
 */
__thread _hl_thread_resource t_resource = {
                                           {0},     /* stream */
                                           0,       /* handle */
                                           0,       /* gen */
                                           0,       /* cudnn_handle */
                                           0,       /* cudnn_desc */
                                           NULL,    /* gen_mutex */
                                           NULL,    /* gpu_mem */
                                           NULL,    /* cpu_mem */
                                           0,       /* event */
                                           -1,      /* device */
                                           0,       /* major */
                                           false};  /* is_init */

__thread cudaStream_t default_stream = 0;
__thread bool g_sync_flag = true;
bool hl_start_flag = false;

#define gettid() syscall(SYS_gettid)

void hl_init(int device) {
  CHECK(hl_start_flag)
    << "[Init failed] hl_start() did not succeed.";

  /* thread has been initialized */
  if (true == t_resource.is_init) {
    hl_set_device(device);
    return;
  }

  /* create thread devcie resources */
  char *tmp;
  thread_device_resources device_res;
  tmp = (char *)malloc(g_system_device_num*sizeof(thread_device_resources*) +
                       device_num*sizeof(_thread_device_resources));
  CHECK_NOTNULL(tmp);
  t_device = (thread_device_resources*)tmp;
  device_res = (thread_device_resources)((char*)tmp +
               g_system_device_num*sizeof(thread_device_resources*));
  memset(t_device, 0, g_system_device_num*sizeof(thread_device_resources*));

  char *tmp_stream = (char *)
      malloc(device_num*NUMBER_OF_THREAD_STREAM*sizeof(cudaStream_t));
  CHECK_NOTNULL(tmp_stream);

  int num = 0;
  for (int dev = 0; dev < g_system_device_num; dev++) {
    if (!g_device[dev]) {
      continue;
    }

    t_device[dev] = &device_res[num];
    t_device[dev]->stream = (cudaStream_t*)(tmp_stream +
        num*NUMBER_OF_THREAD_STREAM*sizeof(cudaStream_t));

    hl_create_thread_resources(dev, t_device[dev]);
    num++;
  }

  hl_cudnn_desc_init(&t_resource.cudnn_desc);

  /* thread initialization is complete */
  t_resource.is_init = true;
  /* set device */
  t_resource.device = -1;
  hl_set_device(device);
}

void hl_fini() {
  if (false == t_resource.is_init) {
    return;
  }

  /* hppl stream fini */
  t_resource.device = -1;
  for (int i = NUMBER_OF_GLOBAL_STREAM; i < HPPL_STREAM_END; i++) {
    t_resource.stream[i] = 0;
  }

  char* tmp = (char*)t_device;
  char* tmp_stream = NULL;
  for (int dev = 0; dev < g_system_device_num; dev++) {
    if (!t_device[dev]) {
      continue;
    }
    if (!tmp_stream) {
        tmp_stream = (char*)t_device[dev]->stream;
    }
    for (int j = 0; j < NUMBER_OF_THREAD_STREAM; j++) {
      CHECK_CUDA(dynload::cudaStreamDestroy(t_device[dev]->stream[j]));
    }

    /* free device memory */
    hl_free_mem_device(t_device[dev]->gpu_mem);
    hl_free_mem_host(t_device[dev]->cpu_mem);
    CHECK_CUDA(dynload::cudaEventDestroy(t_device[dev]->mem_event));
  }

  free(tmp);
  free(tmp_stream);
  t_resource.is_init = false;
}

int hl_get_device_count() {
  return device_num;
}

void hl_set_device(int device) {
  if (device == t_resource.device) {
    return;
  }

  CHECK(device >= 0 && device < g_system_device_num && g_device[device])
    << "Device: " << device << " is not specified in startup.";

  CHECK_CUDA(dynload::cudaSetDevice(device));

  /* switch thread stream */
  for (int i = 0; i < NUMBER_OF_GLOBAL_STREAM; i++) {
    t_resource.stream[i] = g_device[device]->device_resources->stream[i];
  }

  if (true == t_resource.is_init) {
    for (int i = NUMBER_OF_GLOBAL_STREAM; i < HPPL_STREAM_END; i++) {
      t_resource.stream[i] =
        t_device[device]->stream[i - NUMBER_OF_GLOBAL_STREAM];
    }
    t_resource.gpu_mem = t_device[device]->gpu_mem;
    t_resource.cpu_mem = t_device[device]->cpu_mem;
    t_resource.event   = t_device[device]->mem_event;
  }

  t_resource.handle = g_device[device]->device_resources->handle;
  t_resource.gen = g_device[device]->device_resources->gen;
  t_resource.cudnn_handle = g_device[device]->device_resources->cudnn_handle;
  t_resource.gen_mutex = g_device[device]->device_resources->gen_mutex;
  t_resource.device = device;
  t_resource.major = g_device[device]->major;
  default_stream = t_resource.stream[0];
}

int hl_get_device() {
  int device;
  CHECK_CUDA(dynload::cudaGetDevice(&device));
  return device;
}

void* hl_malloc_device(size_t size) {
  void *dest_d;

  CHECK(size) << __func__ << ": the size for device memory is 0, please check.";
  CHECK_CUDA(dynload::cudaMalloc((void**)&dest_d, size));

  return dest_d;
}

void hl_free_mem_device(void *dest_d) {
  CHECK_NOTNULL(dest_d);

  cudaError_t err = dynload::cudaFree(dest_d);
  CHECK(cudaSuccess == err || cudaErrorCudartUnloading == err)
    << hl_get_device_error_string();
}

void* hl_malloc_host(size_t size) {
  void *dest_h;

  CHECK(size) << __func__ << ": the size for device memory is 0, please check.";
  CHECK_CUDA(dynload::cudaHostAlloc((void**)&dest_h, size, cudaHostAllocDefault));

  return dest_h;
}

void hl_free_mem_host(void *dest_h) {
  CHECK_NOTNULL(dest_h);

  cudaError_t err = dynload::cudaFreeHost(dest_h);
  CHECK (cudaSuccess == err || cudaErrorCudartUnloading == err)
    << hl_get_device_error_string();
}

void hl_memcpy(void *dst, void *src, size_t size) {
  if (0 == size) {
    return;
  }
  CHECK_NOTNULL(dst);
  CHECK_NOTNULL(src);
  CHECK_CUDA(dynload::cudaMemcpy(dst, src, size, cudaMemcpyDefault));
}

void hl_memset_device(void *dest_d, int value, size_t size) {
  CHECK_CUDA(dynload::cudaMemset(dest_d, value, size));
}

void hl_memcpy_host2device(void *dest_d, void *src_h, size_t size) {
  if (0 == size) {
    return;
  }
  CHECK_NOTNULL(src_h);
  CHECK_NOTNULL(dest_d);
  CHECK_CUDA(dynload::cudaMemcpy(dest_d, src_h, size,
             cudaMemcpyHostToDevice));
}

void hl_memcpy_device2host(void *dest_h, void *src_d, size_t size) {
  if (0 == size) {
    return;
  }
  CHECK_NOTNULL(dest_h);
  CHECK_NOTNULL(src_d);
  CHECK_CUDA(dynload::cudaMemcpy(dest_h, src_d, size,
             cudaMemcpyDeviceToHost));
}

void hl_memcpy_device2device(void *dest_d, void *src_d, size_t size) {
  if (0 == size) {
    return;
  }
  CHECK_NOTNULL(dest_d);
  CHECK_NOTNULL(src_d);
  CHECK_CUDA(dynload::cudaMemcpy(dest_d, src_d, size,
             cudaMemcpyDeviceToDevice));
}

void hl_memcpy_async(void *dst, void *src, size_t size, hl_stream_t stream) {
  cudaStream_t cu_stream;

  if (0 == size) {
    return;
  }
  CHECK_NOTNULL(dst);
  CHECK_NOTNULL(src);
  CHECK_LT(stream, HPPL_STREAM_END);
  cu_stream = t_resource.stream[stream];

  CHECK_CUDA(dynload::cudaMemcpyAsync(dst, src, size, cudaMemcpyDefault,
             cu_stream));
}

void hl_start() {
  hl_specify_devices_start(NULL, 0);
  /* set default device */
  hl_set_device(0);
}

bool hl_device_can_access_peer(int device, int peerDevice) {
  int canAccessPeer;
  CHECK_CUDA(dynload::cudaDeviceCanAccessPeer(&canAccessPeer, device,
             peerDevice));

  if (canAccessPeer == 1) {
    return true;
  } else {
    return false;
  }
}

void hl_device_enable_peer_access(int peerDevice) {
  cudaError_t err = dynload::cudaDeviceEnablePeerAccess(peerDevice, 0);
  if (cudaErrorPeerAccessAlreadyEnabled == err) {
    dynload::cudaGetLastError();
  } else {
    CHECK_CUDA(err);
  }
}

void hl_create_global_resources(hl_device_prop device_prop) {
  struct cudaDeviceProp cu_prop;
  int device = device_prop->device;
  global_device_resources device_res = device_prop->device_resources;

  CHECK_CUDA(dynload::cudaSetDevice(device));
  /* device properties */
  CHECK_CUDA(dynload::cudaGetDeviceProperties(&cu_prop, device));

  device_prop->major = cu_prop.major;
  device_prop->minor = cu_prop.minor;
  strncpy(device_prop->device_name, cu_prop.name, 256);
  device_prop->device_mem = cu_prop.totalGlobalMem;

  /* create device stream */
  for (int j = 0; j < NUMBER_OF_GLOBAL_STREAM; j++) {
    CHECK_CUDA(dynload::cudaStreamCreate(&device_res->stream[j]));
  }

  /* cublas init */
  hl_cublas_init(&device_res->handle, device_res->stream[0]);

  /* create curand gen */
  CHECK_EQ(dynload::curandCreateGenerator(&device_res->gen,
           CURAND_RNG_PSEUDO_DEFAULT), CURAND_STATUS_SUCCESS)
           << "[Start failed] Curand init failed.";

  CHECK_EQ(dynload::curandSetStream(device_res->gen,
           device_res->stream[0]), CURAND_STATUS_SUCCESS)
           << "[Start failed] Curand set stream failed!";

  /* create cudnn handle */
  hl_cudnn_init(&device_res->cudnn_handle, device_res->stream[0]);

  int seed = gettid();
  CHECK_EQ(dynload::curandSetPseudoRandomGeneratorSeed(
           device_res->gen, seed+device), CURAND_STATUS_SUCCESS);

  device_res->gen_mutex =
    (pthread_mutex_t*)(malloc(sizeof (pthread_mutex_t)));
  pthread_mutex_init(device_res->gen_mutex, NULL);

  CHECK_CUDA(dynload::cudaRuntimeGetVersion(&g_cuda_lib_version));
}

int hl_get_cuda_version() {
  return g_cuda_lib_version;
}

void hl_create_thread_resources(int device, thread_device_resources device_res) {
  CHECK_CUDA(dynload::cudaSetDevice(device));

  /* create thread stream */
  for (int j = 0; j < NUMBER_OF_THREAD_STREAM; j++) {
    CHECK_CUDA(dynload::cudaStreamCreate(&device_res->stream[j]));
  }

  /* allocation device memory */
  device_res->gpu_mem = (real*)hl_malloc_device(HPPL_GPU_MEMORY_SIZE);

  /* allocation host memory */
  device_res->cpu_mem = (real*)hl_malloc_host(HPPL_GPU_MEMORY_SIZE);

  CHECK_CUDA(dynload::cudaEventCreate(&device_res->mem_event));
}

void hl_specify_devices_start(int* device, int number) {
  if (hl_start_flag) return;

  /* 1. get the number of devices */
  CHECK_CUDA(dynload::cudaGetDeviceCount(&g_system_device_num));
  CHECK_NE(g_system_device_num, 0) << "[Start failed] there is no GPU device";
  if (device == NULL) {
    number = g_system_device_num;
  }

  /* 2. check device & create device property table */
  CHECK_LE(number, g_system_device_num)
    << "[Start failed] System does not have enough device. "
    << "Device number: " << g_system_device_num
    << "Input number: " << number;

  char *tmp;
  hl_device_prop device_prop;
  tmp = (char *)malloc(g_system_device_num*sizeof(hl_device_prop*) +
                       number*sizeof(_hl_device_prop));
  CHECK(tmp) << "[Start failed] System memory is not enough.";

  g_device = (hl_device_prop*)tmp;
  device_prop = (hl_device_prop)((char*)tmp +
                g_system_device_num*sizeof(hl_device_prop*));
  memset(g_device, 0, g_system_device_num*sizeof(hl_device_prop*));
  int num = 0;
  for (int i = 0; i < number; i++) {
    int dev;
    if (device == NULL) {
      dev = i;
    } else {
      dev = device[i];
    }

    CHECK_LT(dev, g_system_device_num)
      << "[Start failed] The specified device number is "
      << "out of range. Max device number: " << g_system_device_num - 1
      << " Specified devcie number: "<< dev;

    if (g_device[dev]) {
      /* Warning */
      LOG(WARNING) <<"[Warning] Repeat specify device: " << dev;
      continue;
    }

    g_device[dev] = &device_prop[num];
    g_device[dev]->device = dev;
    num++;
  }
  device_num = num;

  /* 3.  create global device resources */
  char *tmp_res = (char *)malloc(device_num*sizeof(_global_device_resources));
  CHECK_NOTNULL(tmp_res);

  char *tmp_stream =
    (char *)malloc(device_num*NUMBER_OF_GLOBAL_STREAM*sizeof(cudaStream_t));
  CHECK_NOTNULL(tmp_stream);

  num = 0;
  for (int i = 0; i < g_system_device_num; i++) {
    if (!g_device[i]) {
      continue;
    }

    g_device[i]->device_resources = (global_device_resources)(tmp_res +
      num*sizeof(_global_device_resources));
    g_device[i]->device_resources->stream = (cudaStream_t*)(tmp_stream +
      num*NUMBER_OF_GLOBAL_STREAM*sizeof(cudaStream_t));

    hl_create_global_resources(g_device[i]);
    num++;
  }

  /* hl_start() is ok */
  hl_start_flag = true;
  /* set default device */
  if (device == NULL) {
      hl_set_device(0);
  } else {
      hl_set_device(device[0]);
  }
}

void hl_rand(real *dest_d, size_t num) {
  pthread_mutex_lock(t_resource.gen_mutex);
  CHECK_EQ(
#ifndef HPPL_TYPE_DOUBLE
  dynload::curandGenerateUniform(t_resource.gen, dest_d, num),
#else
  dynload::curandGenerateUniformDouble(t_resource.gen, dest_d, num),
#endif
  CURAND_STATUS_SUCCESS);
  pthread_mutex_unlock(t_resource.gen_mutex);
  CHECK_SYNC("hl_rand failed");
}

void hl_srand(unsigned int seed) {
  pthread_mutex_lock(t_resource.gen_mutex);
  CHECK_EQ(dynload::curandSetPseudoRandomGeneratorSeed(
           t_resource.gen, seed), CURAND_STATUS_SUCCESS);
  pthread_mutex_unlock(t_resource.gen_mutex);
}

void hl_set_sync_flag(bool flag) {
  g_sync_flag = flag;
}

bool hl_get_sync_flag() {
  return g_sync_flag;
}

void hl_stream_synchronize(hl_stream_t stream) {
  cudaStream_t cu_stream;

  CHECK_LT(stream, HPPL_STREAM_END)
    << __func__ <<": the parameter stream is error.";

  cu_stream = t_resource.stream[stream];
  CHECK_CUDA(dynload::cudaStreamSynchronize(cu_stream));
}

void hl_create_event(hl_event_t *event) {
  CHECK_NOTNULL(event);

  struct _hl_event_st* st_event =
    (struct _hl_event_st*)malloc(sizeof(struct _hl_event_st));

  CHECK_CUDA(dynload::cudaEventCreate(&st_event->cu_event));

  *event = st_event;
}

float hl_event_elapsed_time(hl_event_t start, hl_event_t end) {
  float time;
  CHECK_NOTNULL(start);
  CHECK_NOTNULL(end);

  CHECK_CUDA(dynload::cudaEventElapsedTime(&time,
             start->cu_event, end->cu_event));
  return time;
}

void hl_stream_record_event(hl_stream_t stream, hl_event_t event) {
  cudaStream_t cu_stream;

  CHECK_NOTNULL(event);
  CHECK_LT(stream, HPPL_STREAM_END)
    << __func__ <<": the parameter stream is error.";

  cu_stream = t_resource.stream[stream];
  CHECK_CUDA(dynload::cudaEventRecord(
             event->cu_event, cu_stream));
}

void hl_stream_wait_event(hl_stream_t stream, hl_event_t event) {
  cudaStream_t cu_stream;

  CHECK_NOTNULL(event);
  CHECK_LT(stream, HPPL_STREAM_END)
    << __func__ <<": the parameter stream is error.";

  cu_stream = t_resource.stream[stream];
  CHECK_CUDA(dynload::cudaStreamWaitEvent(
             cu_stream, event->cu_event, 0));
}

void hl_destroy_event(hl_event_t event) {
  CHECK_NOTNULL(event);
  CHECK_CUDA(dynload::cudaEventDestroy(event->cu_event));

  free(event);
  event = NULL;
}

void hl_event_synchronize(hl_event_t event) {
  CHECK_NOTNULL(event);
  CHECK_CUDA(dynload::cudaEventSynchronize(event->cu_event));
}

void hl_get_device_name(char *name, int len, int device) {
  CHECK_NOTNULL(name);
  CHECK(device >= 0 && device < g_system_device_num && g_device[device])
    << "Device("<< device <<") is not specified in startup.";

  strncpy(name, g_device[device]->device_name , len);
}

void hl_get_device_memory(size_t *mem_size, int device) {
  CHECK_NOTNULL(mem_size);
  CHECK(device >= 0 && device < g_system_device_num && g_device[device])
    << "Device("<< device <<") is not specified in startup.";

  *mem_size = g_device[device]->device_mem;
}

void hl_get_device_compute_capability(int *major, int *minor, int device) {
  CHECK_NOTNULL(major);
  CHECK_NOTNULL(minor);
  CHECK(device >= 0 && device < g_system_device_num && g_device[device])
    << "Device("<< device << ") is not specified in startup.";

  *major = g_device[device]->major;
  *minor = g_device[device]->minor;
}

int hl_get_device_last_error() {
  return (int)dynload::cudaGetLastError();
}

const char* hl_get_device_error_string() {
  cudaError_t err = dynload::cudaGetLastError();
  return dynload::cudaGetErrorString(err);
}

const char* hl_get_device_error_string(size_t err) {
  return dynload::cudaGetErrorString((cudaError_t)err);
}

void hl_device_synchronize() {
  CHECK_CUDA(dynload::cudaDeviceSynchronize());
}
void hl_set_device_flags_block() {
  CHECK_CUDA(dynload::cudaSetDeviceFlags(
             cudaDeviceScheduleBlockingSync));
}

void hl_cuda_event_query(hl_event_t event, bool& isNotReady) {
  cudaError_t err = dynload::cudaEventQuery(event->cu_event);
  CHECK(cudaSuccess == err || cudaErrorNotReady == err);

  if (cudaErrorNotReady == err) {
    isNotReady = true;
  }
}