image_multiproc.py 9.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import os, sys
import numpy as np
from PIL import Image
from cStringIO import StringIO
19
import multiprocessing
D
dangqingqing 已提交
20 21
import functools
import itertools
22 23 24

from paddle.utils.image_util import *
from paddle.trainer.config_parser import logger
25

26 27 28
try:
    import cv2
except ImportError:
29
    logger.warning("OpenCV2 is not installed, using PIL to process")
30
    cv2 = None
31

D
dangqingqing 已提交
32
__all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"]
33

D
dangqingqing 已提交
34 35

class CvTransformer(ImageTransformer):
36
    """
D
dangqingqing 已提交
37
    CvTransformer used python-opencv to process image.
38 39
    """

40 41 42 43 44 45 46 47 48
    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
49 50 51 52 53
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

54
    def resize(self, im, min_size):
55
        row, col = im.shape[:2]
56 57 58
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
59
        else:
60 61
            new_col = min_size * col / row
        im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC)
62 63
        return im

64
    def crop_and_flip(self, im):
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        im: (H x W x K) ndarrays
        """
        row, col = im.shape[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        if self.is_color:
            im = im[start_h:end_h, start_w:end_w, :]
        else:
            im = im[start_h:end_h, start_w:end_w]
        if (self.is_train) and (np.random.randint(2) == 0):
            if self.is_color:
                im = im[:, ::-1, :]
            else:
                im = im[:, ::-1]
        return im

    def transform(self, im):
91 92
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
93 94 95 96 97 98 99 100 101 102 103 104 105 106
        # transpose, swap channel, sub mean
        im = im.astype('float32')
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imdecode(np.fromstring(data, np.uint8), flag)
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

107 108 109 110 111 112 113 114 115 116
    def load_image_from_file(self, file):
        flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE
        im = cv2.imread(file, flag)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
117
class PILTransformer(ImageTransformer):
118
    """
D
dangqingqing 已提交
119
    PILTransformer used PIL to process image.
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    """

    def __init__(
            self,
            min_size=None,
            crop_size=None,
            transpose=(2, 0, 1),  # transpose to C * H * W
            channel_swap=None,
            mean=None,
            is_train=True,
            is_color=True):
        ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color)
        self.min_size = min_size
        self.crop_size = crop_size
        self.is_train = is_train

    def resize(self, im, min_size):
        row, col = im.size[:2]
        new_row, new_col = min_size, min_size
        if row > col:
            new_row = min_size * row / col
        else:
            new_col = min_size * col / row
        im = im.resize((new_row, new_col), Image.ANTIALIAS)
        return im
145

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def crop_and_flip(self, im):
        """
        Return cropped image.
        The size of the cropped image is inner_size * inner_size.
        """
        row, col = im.size[:2]
        start_h, start_w = 0, 0
        if self.is_train:
            start_h = np.random.randint(0, row - self.crop_size + 1)
            start_w = np.random.randint(0, col - self.crop_size + 1)
        else:
            start_h = (row - self.crop_size) / 2
            start_w = (col - self.crop_size) / 2
        end_h, end_w = start_h + self.crop_size, start_w + self.crop_size
        im = im.crop((start_h, start_w, end_h, end_w))
        if (self.is_train) and (np.random.randint(2) == 0):
            im = im.transpose(Image.FLIP_LEFT_RIGHT)
        return im

    def transform(self, im):
        im = self.resize(im, self.min_size)
        im = self.crop_and_flip(im)
        im = np.array(im, dtype=np.float32)  # convert to numpy.array
        # transpose, swap channel, sub mean
        ImageTransformer.transformer(self, im)
        return im

    def load_image_from_string(self, data):
        im = Image.open(StringIO(data))
        return im

    def transform_from_string(self, data):
        im = self.load_image_from_string(data)
        return self.transform(im)

    def load_image_from_file(self, file):
        im = Image.open(file)
        return im

    def transform_from_file(self, file):
        im = self.load_image_from_file(file)
        return self.transform(im)


D
dangqingqing 已提交
190 191 192 193 194
def job(is_img_string, transformer, (data, label)):
    if is_img_string:
        return transformer.transform_from_string(data), label
    else:
        return transformer.transform_from_file(data), label
195 196 197


class MultiProcessImageTransformer(object):
198 199
    def __init__(self,
                 procnum=10,
200
                 resize_size=None,
201
                 crop_size=None,
202
                 transpose=(2, 0, 1),
203 204 205
                 channel_swap=None,
                 mean=None,
                 is_train=True,
206 207
                 is_color=True,
                 is_img_string=True):
208
        """
209 210 211 212
        Processing image with multi-process. If it is used in PyDataProvider,
        the simple usage for CNN is as follows:
       
        .. code-block:: python
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
            def hool(settings, is_train,  **kwargs):
                settings.is_train = is_train
                settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32)
                settings.input_types = [
                    dense_vector(3 * 224 * 224),
                    integer_value(1)]
                settings.transformer = MultiProcessImageTransformer(
                    procnum=10,
                    resize_size=256,
                    crop_size=224,
                    transpose=(2, 0, 1),
                    mean=settings.mean_values,
                    is_train=settings.is_train)


            @provider(init_hook=hook, pool_size=20480)
            def process(settings, file_list):
                with open(file_list, 'r') as fdata:
                    for line in fdata: 
                        data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
                        data = data_dic['data']
                        labels = data_dic['label']
                        labels = np.array(labels, dtype=np.float32)
                        for im, lab in settings.dp.run(data, labels):
                            yield [im.astype('float32'), int(lab)]

        :param procnum: processor number.
        :type procnum: int
        :param resize_size: the shorter edge size of image after resizing.
        :type resize_size: int
        :param crop_size: the croping size.
        :type crop_size: int
        :param transpose: the transpose order, Paddle only allow C * H * W order.
        :type transpose: tuple or list
        :param channel_swap: the channel swap order, RGB or BRG.
        :type channel_swap: tuple or list
        :param mean: the mean values of image, per-channel mean or element-wise mean.
        :type mean: array, The dimension is 1 for per-channel mean.
                    The dimension is 3 for element-wise mean. 
        :param is_train: training peroid or testing peroid.
        :type is_train: bool.
        :param is_color: the image is color or gray. 
        :type is_color: bool.
        :param is_img_string: The input can be the file name of image or image string.
        :type is_img_string: bool.
259
        """
260

D
dangqingqing 已提交
261
        self.procnum = procnum
262 263 264
        self.pool = multiprocessing.Pool(procnum)
        self.is_img_string = is_img_string
        if cv2 is not None:
D
dangqingqing 已提交
265
            self.transformer = CvTransformer(resize_size, crop_size, transpose,
266 267 268
                                             channel_swap, mean, is_train,
                                             is_color)
        else:
D
dangqingqing 已提交
269 270 271
            self.transformer = PILTransformer(resize_size, crop_size, transpose,
                                              channel_swap, mean, is_train,
                                              is_color)
272

D
dangqingqing 已提交
273 274 275 276
    def run(self, data, label):
        fun = functools.partial(job, self.is_img_string, self.transformer)
        return self.pool.imap_unordered(
            fun, itertools.izip(data, label), chunksize=100 * self.procnum)