math_function_test.cc 5.4 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
15 16
#include "gtest/gtest.h"

G
guosheng 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
TEST(math_function, gemm_notrans_cblas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
37
  paddle::operators::math::gemm<paddle::platform::CPUDeviceContext, float>(
G
guosheng 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
      context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1,
      input3_ptr + 1, 4);

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}

TEST(math_function, gemm_trans_clbas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
71
  paddle::operators::math::gemm<paddle::platform::CPUDeviceContext, float>(
G
guosheng 已提交
72 73 74 75 76 77 78 79 80 81 82 83
      context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1,
      input3_ptr + 1, 4);

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
84 85 86 87 88 89

TEST(math_function, zero) {
  paddle::framework::Tensor tensor;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* t = tensor.mutable_data<float>({2, 2}, *cpu_place);
  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
90 91
  paddle::operators::math::SetConstant<paddle::platform::CPUDeviceContext,
                                       float>
Q
qijun 已提交
92 93
      functor;
  functor(context, &tensor, 0);
94 95 96 97 98
  EXPECT_EQ(t[0], 0);
  EXPECT_EQ(t[1], 0);
  EXPECT_EQ(t[2], 0);
  EXPECT_EQ(t[3], 0);

Q
qijun 已提交
99
  functor(context, &tensor, 1);
100 101 102 103 104 105

  EXPECT_EQ(t[0], 1);
  EXPECT_EQ(t[1], 1);
  EXPECT_EQ(t[2], 1);
  EXPECT_EQ(t[3], 1);
}
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

template <typename T>
void GemvTest(int m, int n, bool trans) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
  auto* cpu_place = new paddle::platform::CPUPlace();
  int b_num = trans ? m : n;
  int c_num = trans ? n : m;

  T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
  T* data_b = vec_b.mutable_data<T>({b_num}, *cpu_place);
  T* data_c = vec_c.mutable_data<T>({c_num}, *cpu_place);
  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
127
  paddle::operators::math::gemv<paddle::platform::CPUDeviceContext, T>(
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
      context, trans, static_cast<int>(m), static_cast<int>(n), 1., data_a,
      data_b, 0., data_c);

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(4, 5, false);
  GemvTest<float>(12, 7, true);
  GemvTest<double>(7, 9, true);
}
156 157 158 159 160 161 162 163 164 165 166 167

TEST(math_funciton, set_constant) {
  paddle::framework::Tensor t;
  t.Resize({10, 10});
  t.mutable_data<int>(paddle::platform::CPUPlace());
  auto* ctx = new paddle::platform::CPUDeviceContext();
  paddle::operators::math::set_constant(*ctx, &t, 10);
  for (int64_t i = 0; i < t.numel(); ++i) {
    PADDLE_ENFORCE_EQ(10, t.data<int>()[i]);
  }
  delete ctx;
}