tensor_util_test.cc 8.6 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
D
dzhwinter 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/tensor_util.h"
D
dzhwinter 已提交
16
#include <gtest/gtest.h>
Y
Yang Yu 已提交
17
#include <cmath>
D
dzhwinter 已提交
18 19 20 21
#include <string>

namespace paddle {
namespace framework {
D
dzhwinter 已提交
22

23
TEST(Copy, Tensor) {
D
dzhwinter 已提交
24 25 26 27 28 29 30 31 32
  Tensor src_tensor;
  Tensor dst_tensor;
  platform::CPUDeviceContext cpu_ctx((platform::CPUPlace()));

  int* src_ptr =
      src_tensor.mutable_data<int>(make_ddim({3, 3}), platform::CPUPlace());

  int arr[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
  memcpy(src_ptr, arr, 9 * sizeof(int));
D
dzhwinter 已提交
33
  src_tensor.set_layout(DataLayout::kAnyLayout);
D
dzhwinter 已提交
34 35

  auto cpu_place = new platform::CPUPlace();
36
  Copy(src_tensor, *cpu_place, &dst_tensor);
D
dzhwinter 已提交
37 38 39 40 41 42 43

  const int* dst_ptr = dst_tensor.data<int>();
  ASSERT_NE(src_ptr, dst_ptr);
  for (size_t i = 0; i < 9; ++i) {
    EXPECT_EQ(src_ptr[i], dst_ptr[i]);
  }

D
dzhwinter 已提交
44 45
  EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());

D
dzhwinter 已提交
46
  Tensor slice_tensor = src_tensor.Slice(1, 2);
47
  Copy(slice_tensor, *cpu_place, &dst_tensor);
D
dzhwinter 已提交
48 49 50 51 52 53
  const int* slice_ptr = slice_tensor.data<int>();
  dst_ptr = dst_tensor.data<int>();
  ASSERT_NE(dst_ptr, slice_ptr);
  for (size_t i = 0; i < 3; ++i) {
    EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
  }
D
dzhwinter 已提交
54 55
  EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());

D
dzhwinter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68
#ifdef PADDLE_WITH_CUDA
  {
    Tensor src_tensor;
    Tensor gpu_tensor;
    Tensor dst_tensor;

    int* src_ptr =
        src_tensor.mutable_data<int>(make_ddim({3, 3}), platform::CPUPlace());

    int arr[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
    memcpy(src_ptr, arr, 9 * sizeof(int));

    // CPU Tensor to GPU Tensor
D
dzhwinter 已提交
69
    auto gpu_place = new platform::CUDAPlace(0);
D
dzhwinter 已提交
70
    platform::CUDADeviceContext gpu_ctx(*gpu_place);
71
    Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
D
dzhwinter 已提交
72 73 74

    // GPU Tensor to CPU Tensor
    auto cpu_place = new platform::CPUPlace();
75
    Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
D
dzhwinter 已提交
76 77 78 79 80 81 82 83 84 85 86 87

    // Sync before Compare Tensors
    gpu_ctx.Wait();
    const int* dst_ptr = dst_tensor.data<int>();
    ASSERT_NE(src_ptr, dst_ptr);
    for (size_t i = 0; i < 9; ++i) {
      EXPECT_EQ(src_ptr[i], dst_ptr[i]);
    }

    Tensor slice_tensor = src_tensor.Slice(1, 2);

    // CPU Slice Tensor to GPU Tensor
88
    Copy(slice_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
D
dzhwinter 已提交
89 90

    // GPU Tensor to CPU Tensor
91
    Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
D
dzhwinter 已提交
92 93 94 95 96 97 98 99 100

    // Sync before Compare Slice Tensors
    gpu_ctx.Wait();
    const int* slice_ptr = slice_tensor.data<int>();
    dst_ptr = dst_tensor.data<int>();
    ASSERT_NE(dst_ptr, slice_ptr);
    for (size_t i = 0; i < 3; ++i) {
      EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
    }
D
dzhwinter 已提交
101 102

    EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());
D
dzhwinter 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116
  }
#endif
}

TEST(CopyFromVector, Tensor) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  {
    std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
    Tensor cpu_tensor;

    // Copy to CPU Tensor
    cpu_tensor.Resize(make_ddim({3, 3}));
    auto cpu_place = new paddle::platform::CPUPlace();
D
dzhwinter 已提交
117
    CopyFromVector<int>(src_vec, &cpu_tensor);
D
dzhwinter 已提交
118 119 120 121 122 123 124 125 126 127 128

    // Compare Tensors
    const int* cpu_ptr = cpu_tensor.data<int>();
    const int* src_ptr = src_vec.data();
    ASSERT_NE(src_ptr, cpu_ptr);
    for (size_t i = 0; i < 9; ++i) {
      EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
    }

    src_vec.erase(src_vec.begin(), src_vec.begin() + 5);
    cpu_tensor.Resize(make_ddim({2, 2}));
D
dzhwinter 已提交
129
    CopyFromVector<int>(src_vec, &cpu_tensor);
D
dzhwinter 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    cpu_ptr = cpu_tensor.data<int>();
    src_ptr = src_vec.data();
    ASSERT_NE(src_ptr, cpu_ptr);
    for (size_t i = 0; i < 5; ++i) {
      EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
    }

    delete cpu_place;
  }

#ifdef PADDLE_WITH_CUDA
  {
    std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
    Tensor cpu_tensor;
    Tensor gpu_tensor;
    Tensor dst_tensor;

    // Copy to CPU Tensor
    cpu_tensor.Resize(make_ddim({3, 3}));
    auto cpu_place = new paddle::platform::CPUPlace();
    CPUDeviceContext cpu_ctx(*cpu_place);
    CopyFromVector<int>(src_vec, cpu_ctx, &cpu_tensor);

    // Copy to GPUTensor
    gpu_tensor.Resize(make_ddim({3, 3}));
D
dzhwinter 已提交
155
    auto gpu_place = new paddle::platform::CUDAPlace();
D
dzhwinter 已提交
156 157 158
    CUDADeviceContext gpu_ctx(*gpu_place);
    CopyFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);
    // Copy from GPU to CPU tensor for comparison
159
    Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
D
dzhwinter 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    // Sync before Compare Tensors
    gpu_ctx.Wait();
    const int* src_ptr = src_vec.data();
    const int* cpu_ptr = cpu_tensor.data<int>();
    const int* dst_ptr = dst_tensor.data<int>();
    ASSERT_NE(src_ptr, cpu_ptr);
    ASSERT_NE(src_ptr, dst_ptr);
    for (size_t i = 0; i < 9; ++i) {
      EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
      EXPECT_EQ(src_ptr[i], dst_ptr[i]);
    }

    src_vec.erase(src_vec.begin(), src_vec.begin() + 5);

    cpu_tensor.Resize(make_ddim({2, 2}));
    CopyFromVector<int>(src_vec, cpu_ctx, &cpu_tensor);
    gpu_tensor.Resize(make_ddim({2, 2}));
    CopyFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);
179
    Copy(gpu_tensor, *cpu_place, gpu_ctx, &dst_tensor);
D
dzhwinter 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    // Sync before Compare Tensors
    gpu_ctx.Wait();
    src_ptr = src_vec.data();
    cpu_ptr = cpu_tensor.data<int>();
    dst_ptr = dst_tensor.data<int>();
    ASSERT_NE(src_ptr, cpu_ptr);
    ASSERT_NE(src_ptr, dst_ptr);
    for (size_t i = 0; i < 5; ++i) {
      EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
      EXPECT_EQ(src_ptr[i], dst_ptr[i]);
    }

    delete cpu_place;
    delete gpu_place;
  }
#endif
}

TEST(CopyToVector, Tensor) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  {
    Tensor src;
    int* src_ptr = src.mutable_data<int>({3, 3}, CPUPlace());
    for (int i = 0; i < 3 * 3; ++i) {
      src_ptr[i] = i;
    }

    CPUPlace place;
    std::vector<int> dst;
D
dzhwinter 已提交
211
    CopyToVector<int>(src, &dst);
D
dzhwinter 已提交
212 213 214 215 216 217 218 219 220

    for (int i = 0; i < 3 * 3; ++i) {
      EXPECT_EQ(src_ptr[i], dst[i]);
    }
  }
#ifdef PADDLE_WITH_CUDA
  {
    std::vector<int> src_vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
    Tensor gpu_tensor;
D
dzhwinter 已提交
221
    CUDAPlace place;
D
dzhwinter 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234
    CUDADeviceContext gpu_ctx(place);
    CopyFromVector<int>(src_vec, gpu_ctx, &gpu_tensor);

    std::vector<int> dst;
    CopyToVector<int>(gpu_tensor, gpu_ctx, &dst);

    for (int i = 0; i < 3 * 3; ++i) {
      EXPECT_EQ(src_vec[i], dst[i]);
    }
  }
#endif
}

Y
Yang Yu 已提交
235
TEST(HasNAN, CPU) {
Y
Yang Yu 已提交
236 237 238 239 240 241 242 243 244 245 246
  using namespace paddle::framework;
  using namespace paddle::platform;
  Tensor src;
  float* buf = src.mutable_data<float>({3}, CPUPlace());
  buf[0] = 0.0;
  buf[1] = NAN;
  buf[2] = 0.0;

  ASSERT_TRUE(HasNAN(src));
}

Y
Yang Yu 已提交
247
TEST(HasInf, CPU) {
Y
Yang Yu 已提交
248 249 250 251 252 253 254 255 256 257
  using namespace paddle::framework;
  using namespace paddle::platform;
  Tensor src;
  double* buf = src.mutable_data<double>({3}, CPUPlace());
  buf[0] = 1.0;
  buf[1] = INFINITY;
  buf[2] = 0.0;
  ASSERT_TRUE(HasInf(src));
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
TEST(Tensor, SerializeAndDeserialize) {
  framework::Tensor src_tensor;
  int array[6] = {1, 2, 3, 4, 5, 6};
  src_tensor.Resize({2, 3});
  int* src_ptr = src_tensor.mutable_data<int>(platform::CPUPlace());
  for (int i = 0; i < 6; ++i) {
    src_ptr[i] = array[i];
  }
  {
    framework::Tensor dst_tensor;
    auto place = new platform::CPUPlace();
    platform::CPUDeviceContext cpu_ctx(*place);
    std::ostringstream oss;
    SerializeToStream(oss, src_tensor, cpu_ctx);

    std::istringstream iss(oss.str());
Y
Yancey 已提交
274
    DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
275 276 277 278
    int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
    for (int i = 0; i < 5; ++i) {
      ASSERT_EQ(dst_ptr[i], array[i]);
    }
Y
Yancey 已提交
279
    ASSERT_EQ(dst_tensor.dims(), src_tensor.dims());
280 281 282 283 284 285 286 287 288 289 290
    delete place;
  }
#ifdef PADDLE_WITH_CUDA
  {
    Tensor gpu_tensor;
    gpu_tensor.Resize({2, 3});
    Tensor dst_tensor;

    auto gpu_place = new platform::CUDAPlace();
    platform::CUDADeviceContext gpu_ctx(*gpu_place);

291
    Copy(src_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
292 293 294 295 296

    std::ostringstream oss;
    SerializeToStream(oss, gpu_tensor, gpu_ctx);

    std::istringstream iss(oss.str());
Y
Yancey 已提交
297
    DeserializeFromStream(iss, &dst_tensor, gpu_ctx);
298 299 300 301 302 303 304 305 306 307

    int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
    for (int i = 0; i < 6; ++i) {
      ASSERT_EQ(dst_ptr[i], array[i]);
    }
    delete gpu_place;
  }
#endif
}

D
dzhwinter 已提交
308 309
}  // namespace framework
}  // namespace paddle