squeeze_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/squeeze_op.h"
L
Leo Chen 已提交
16

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20
#include <vector>
L
Leo Chen 已提交
21

22
#include "paddle/fluid/framework/infershape_utils.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/phi/infermeta/unary.h"
25 26 27 28

namespace paddle {
namespace operators {

L
Leo Chen 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
                               const framework::DDim &in_dims,
                               bool is_runtime) {
  size_t num_squeeze_dims = squeeze_dims.size();
  std::vector<bool> should_squeeze(in_dims.size(), false);

  // Mark dimensions need to be squeezed.
  if (num_squeeze_dims == 0) {
    for (int i = 0; i < in_dims.size(); ++i) {
      if (in_dims[i] == 1) {
        should_squeeze[i] = true;
      }
    }
  } else {
    for (size_t i = 0; i < num_squeeze_dims; ++i) {
      int current = squeeze_dims[i] < 0 ? squeeze_dims[i] + in_dims.size()
                                        : squeeze_dims[i];

      PADDLE_ENFORCE_GE(
48 49
          current,
          0,
L
Leo Chen 已提交
50 51 52
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
53 54 55 56
              -in_dims.size(),
              in_dims.size() - 1,
              current,
              in_dims));
L
Leo Chen 已提交
57
      PADDLE_ENFORCE_LT(
58 59
          current,
          in_dims.size(),
L
Leo Chen 已提交
60 61 62
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
63 64 65 66
              -in_dims.size(),
              in_dims.size() - 1,
              current,
              in_dims));
L
Leo Chen 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

      if (!should_squeeze[current]) {
        if (is_runtime) {
          // At run time, dim of 1 is allowed to squeeze
          if (in_dims[current] == 1) {
            should_squeeze[current] = true;
          }
        } else {
          // At compile time, dim of -1 or 1 is allowed to squeeze
          if (in_dims[current] == 1 || in_dims[current] == -1) {
            should_squeeze[current] = true;
          }
        }
      }
    }
  }
  // Make output dimensions
  std::vector<int64_t> output_shape;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (!should_squeeze[i]) {
      output_shape.push_back(in_dims[i]);
    }
  }
90
  return phi::make_ddim(output_shape);
L
Leo Chen 已提交
91 92
}

93
class SqueezeOp : public framework::OperatorWithKernel {
94
 public:
95 96 97
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
98 99
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze");
100

Y
yuyang18 已提交
101
    const auto &x_dims = ctx->GetInputDim("X");
102
    // Check input tensor dims (<6) Eigen limit.
103 104
    PADDLE_ENFORCE_LE(x_dims.size(),
                      6,
105 106 107 108
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape=[%s].",
109 110
                          x_dims.size(),
                          x_dims));
111

Y
yuyang18 已提交
112
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
L
Leo Chen 已提交
113
    auto out_dims = GetOutputShape(axes, x_dims, false);
114
    ctx->SetOutputDim("Out", out_dims);
115 116 117 118 119
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
120 121
  }

122 123 124
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
125 126 127
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
128
  }
129 130
};

131
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
132
 public:
133 134 135 136 137 138 139 140 141 142 143
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
144 145 146
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
147 148 149
  }
};

150 151 152
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
153 154
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
155
    AddAttr<std::vector<int>>("axes",
156
                              "(std::vector<int>). List of integers,"
157
                              " indicating the dimensions to squeeze.")
158 159
        .SetDefault({})
        .SupportTensor();
160 161
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
162 163
        .SetDefault(false)
        .AsExtra();
164 165 166 167
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
168 169
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
170
    AddComment(R"DOC(
Y
yuyang18 已提交
171
        Squeeze Operator.
172 173 174 175

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
176
        If an axis is selected with shape entry not equal to one, an error is raised.
177

Y
yuyang18 已提交
178 179
        Examples:
        Case 1:
180
          Given
Y
yuyang18 已提交
181 182 183 184 185 186 187 188 189
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
190
          and
191
            axes = []
Y
yuyang18 已提交
192 193
          we get:
            Out.shape = (3, 5)
194 195 196 197
    )DOC");
  }
};

198 199 200 201 202
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

203
  void Apply(GradOpPtr<T> grad_op) const override {
204 205 206 207 208 209 210 211
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
template <typename T>
class SqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_INPLACE_OP_INFERER(SqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SqueezeGradInplaceInferer,
227 228
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
229
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SqueezeGradNoNeedBufferVarsInferer, "X");
230 231 232 233
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
234

235 236 237
REGISTER_OPERATOR(squeeze,
                  ops::SqueezeOp,
                  ops::SqueezeOpMaker,
238 239
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
240 241
REGISTER_OPERATOR(squeeze_grad,
                  ops::SqueezeGradOp,
242 243
                  ops::SqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
244
                  ops::SqueezeGradNoNeedBufferVarsInferer);
245

246
REGISTER_OP_CPU_KERNEL(
247
    squeeze,
L
Leo Chen 已提交
248 249 250 251 252 253 254 255 256 257
    ops::SqueezeKernel<phi::CPUContext, float>,
    ops::SqueezeKernel<phi::CPUContext, double>,
    ops::SqueezeKernel<phi::CPUContext, bool>,
    ops::SqueezeKernel<phi::CPUContext, int>,
    ops::SqueezeKernel<phi::CPUContext, uint8_t>,
    ops::SqueezeKernel<phi::CPUContext, int8_t>,
    ops::SqueezeKernel<phi::CPUContext, int64_t>,
    ops::SqueezeKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SqueezeKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SqueezeKernel<phi::CPUContext, paddle::platform::bfloat16>);
258 259
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
L
Leo Chen 已提交
260 261 262 263 264 265 266 267 268 269
    ops::SqueezeGradKernel<phi::CPUContext, float>,
    ops::SqueezeGradKernel<phi::CPUContext, double>,
    ops::SqueezeGradKernel<phi::CPUContext, bool>,
    ops::SqueezeGradKernel<phi::CPUContext, int>,
    ops::SqueezeGradKernel<phi::CPUContext, uint8_t>,
    ops::SqueezeGradKernel<phi::CPUContext, int8_t>,
    ops::SqueezeGradKernel<phi::CPUContext, int64_t>,
    ops::SqueezeGradKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SqueezeGradKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SqueezeGradKernel<phi::CPUContext, paddle::platform::bfloat16>);