test_preprocessor.py 3.7 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
F
fengjiayi 已提交
16
import numpy as np
F
fengjiayi 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

import paddle.fluid as fluid
import paddle.v2 as paddle
import paddle.v2.dataset.mnist as mnist


class TestPreprocessor(unittest.TestCase):
    def setUp(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            reader = paddle.batch(mnist.train(), batch_size=32)
            feeder = fluid.DataFeeder(
                feed_list=[  # order is image and label
                    fluid.layers.data(
                        name='image', shape=[784]),
                    fluid.layers.data(
                        name='label', shape=[1], dtype='int64'),
                ],
                place=fluid.CPUPlace())
            self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
                './mnist_for_preprocessor_test.recordio', reader, feeder)

    def test_main(self):
F
fengjiayi 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        N = 10

        img_expected_res = []
        lbl_expected_res = []
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data_file = fluid.layers.io.open_recordio_file(
                './mnist_for_preprocessor_test.recordio',
                shapes=[[-1, 784], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            img, lbl = fluid.layers.io.read_file(data_file)

            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            else:
                place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for _ in range(N):
                img_v, lbl_v = exe.run(fetch_list=[img, lbl])
                img_expected_res.append(img_v / 2)
                lbl_expected_res.append(lbl_v + 1)

        img_actual_res = []
        lbl_actual_res = []
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data_file = fluid.layers.io.open_recordio_file(
                './mnist_for_preprocessor_test.recordio',
                shapes=[[-1, 784], [-1, 1]],
                lod_levels=[0, 0],
                dtypes=['float32', 'int64'])
            preprocessor = fluid.layers.io.Preprocessor(reader=data_file)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

F
fengjiayi 已提交
77 78
            data_file = fluid.layers.io.double_buffer(preprocessor())
            img, lbl = fluid.layers.io.read_file(data_file)
F
fengjiayi 已提交
79 80 81 82 83 84 85

            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            else:
                place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
F
fengjiayi 已提交
86 87 88 89
            for _ in range(N):
                img_v, lbl_v = exe.run(fetch_list=[img, lbl])
                img_actual_res.append(img_v)
                lbl_actual_res.append(lbl_v)
F
fengjiayi 已提交
90

F
fengjiayi 已提交
91 92 93
        for idx in range(N):
            np.allclose(img_expected_res[idx], img_actual_res[idx])
            np.allclose(lbl_expected_res[idx], lbl_actual_res[idx])