node.py 19.5 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
D
dongdaxiang 已提交
16 17 18 19


class Server(object):
    """
20 21
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
22 23 24 25 26 27 28 29 30
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
31
        it's a base class, does not have implementation
D
dongdaxiang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
48 49 50 51 52 53
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
54

55
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
56 57 58
        """
        Args:
            table_id(int): id of sparse params table
59
            strategy(dict): the config dict.
D
dongdaxiang 已提交
60 61 62
        Returns:
            return None 
        """
63

64 65 66 67 68 69 70
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_SPARSE_TABLE, table.type))
71 72
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
73
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
74 75
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
76 77 78 79 80

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                    'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                    'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                    'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
81
                    'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
82 83
                    'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                    'sparse_cache_file_num']
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        support_table_calss = ['DownpourSparseTable']
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
                    "support sparse_table_class: [ 'DownpourSparseTable' ], \
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

        if table_class == 'DownpourSparseTable':
102 103 104 105 106 107
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)

            support_accessor_class = [
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor'
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor'], \
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

            if accessor_class == 'DownpourFeatureValueAccessor' or accessor_class == 'DownpourCtrAccessor':
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
159 160 161 162 163 164 165 166
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

167 168
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
169 170 171
                table1.converter = converter
                table1.deconverter = deconverter

172 173
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
174 175
                table2.converter = converter
                table2.deconverter = deconverter
176

177
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
178
                        sparse_table_names):
D
dongdaxiang 已提交
179 180 181
        """
        Args:
            table_id(int): id of sparse params table
182 183 184 185
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
186 187 188
        Returns:
            return None 
        """
189
        fea_dim = 0
190 191
        dense_param_vars = []
        for p in param_var:
192
            if p.name not in sparse_table_names:
193 194 195
                dense_param_vars.append(p)

        for param in dense_param_vars:
196 197 198 199 200 201 202 203 204 205
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
206 207 208

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
209
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
210
        table.table_id = table_id
211 212 213 214 215 216 217 218 219 220
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
                'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
221
        table.type = pslib.PS_DENSE_TABLE
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
239 240
        table.accessor.fea_dim = fea_dim

241
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
242
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
243 244
        """
        Args:
245
            table_id(int): id of datanorm table
246 247 248 249 250
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
251 252 253
        Returns:
            return None 
        """
254
        fea_dim = 0
255 256
        dense_param_vars = []
        for p in param_var:
257
            if p.name not in sparse_table_names:
258 259 260
                dense_param_vars.append(p)

        for param in dense_param_vars:
261 262 263 264 265 266 267 268 269 270
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
                        %(table_id, pslib.PS_DENSE_TABLE, table.type))
271 272 273 274 275 276 277 278 279 280
        if strategy is None:
            strategy = dict()

        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save',\
                'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
281
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
282
        table.table_id = table_id
283
        table.table_class = strategy.get('datanorm_table_class',
284
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
285
        table.type = pslib.PS_DENSE_TABLE
286 287
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
288
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
289
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
290
                                                           'summary')
291 292
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
293 294 295 296 297 298
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
299
        return self._server
D
dongdaxiang 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
314
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
315

316 317 318 319 320
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
321 322 323
        """
        Args:
            table_id(int): id of sparse params table
324 325 326 327
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None

D
dongdaxiang 已提交
328 329 330
        Returns:
            return None 
        """
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
                i.name + "@GRAD" in slot_value_grad_names]
            sorted_slot_value_vars += [i for i in slot_value_vars if \
                i.name + "@GRAD" not in slot_value_grad_names]
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
351 352
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
353
                keys = table.slot_key
354 355 356 357
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
358
                                         table_id)
359 360
                target_table = table
                break
361

362 363 364
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
365
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
366
        table.table_id = table_id
367 368 369
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
370

371
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
372
                        dense_start_table_id, sparse_table_names):
D
dongdaxiang 已提交
373 374 375 376 377
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
378 379 380 381
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
382 383 384
        Returns:
            return None 
        """
385
        sparse_table_name_grad = []
386
        for name in sparse_table_names:
387 388 389 390
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
391
            if p.name not in sparse_table_names:
392 393 394 395 396 397 398 399 400
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
401

402 403
        for table in self._worker.dense_table:
            if table.table_id == table_id:
404
                desc_dense_param_name = list(table.dense_variable_name)
405 406 407
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
408 409
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
410 411
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
412 413 414
                        return
                    else:
                        raise ValueError(
415 416
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
417 418 419 420
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
421
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
422
        table.table_id = table_id
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
450 451 452 453 454

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
455
        return self._worker