backward_test.cc 33.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15
#include "paddle/framework/backward.h"
D
dongzhihong 已提交
16

Y
Yu Yang 已提交
17
#include <gtest/gtest.h>
18 19
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
Y
Yu Yang 已提交
20
#include "paddle/framework/op_registry.h"
21
#include "paddle/framework/var_desc.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25 26
namespace paddle {
namespace framework {

D
dongzhihong 已提交
27 28
using DeviceContext = platform::DeviceContext;

Q
Qiao Longfei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42
class NoneOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *ctx) const override {}
};

template <typename Place, typename T>
class NoneKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {}
};

Y
Yu Yang 已提交
43
class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
44
 public:
Y
Yu Yang 已提交
45
  RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yu Yang 已提交
46
      : OpProtoAndCheckerMaker(proto, op_checker) {
47 48 49
    AddInput("X", "Input X of Add");
    AddInput("b", "Bias of Add");
    AddOutput("Out", "Out of Add");
Y
Yu Yang 已提交
50 51 52 53
    AddComment("Add Op");
  }
};

54 55 56 57 58
class RowWiseAddGradMaker : public SingleGradOpDescMaker {
 public:
  using SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
59 60 61 62 63 64 65
  std::unique_ptr<OpDescBind> Apply() const override {
    auto grad_op = new OpDescBind();
    grad_op->SetInput(GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(GradVarName("X"), InputGrad("X"));
    grad_op->SetOutput(GradVarName("b"), InputGrad("b"));
    grad_op->SetType("rowwise_add_grad");
    return std::unique_ptr<OpDescBind>(grad_op);
66 67 68
  }
};

Y
Yu Yang 已提交
69 70 71 72
class MulOpMaker : public OpProtoAndCheckerMaker {
 public:
  MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
73 74
    AddInput("X", "A");
    AddInput("Y", "B");
Y
Yu Yang 已提交
75
    AddOutput("Out", "Out");
F
fengjiayi 已提交
76 77
    AddAttr<int>("x_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
    AddAttr<int>("y_num_col_dims", "").SetDefault(1).EqualGreaterThan(1);
Y
Yu Yang 已提交
78 79 80 81 82 83 84 85 86
    AddComment("Mul");
  }
};

class SigmoidOpMaker : public OpProtoAndCheckerMaker {
 public:
  SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X");
Y
Yu Yang 已提交
87
    AddOutput("Out", "Y");
Y
Yu Yang 已提交
88 89 90 91
    AddComment("Sigmoid");
  }
};

D
dongzhihong 已提交
92 93 94 95 96
class NoGradOpMaker : public OpProtoAndCheckerMaker {
 public:
  NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "X input");
Y
Yu Yang 已提交
97
    AddOutput("Out", "Y output");
D
dongzhihong 已提交
98 99 100 101
    AddComment("NoGradOp, same input output. no Grad");
  }
};

D
dongzhihong 已提交
102
class FcOp : public operators::NetOp {
Y
Yu Yang 已提交
103
 public:
Y
Yu Yang 已提交
104 105
  FcOp(const std::string &type, const VariableNameMap &inputs,
       const VariableNameMap &outputs, const AttributeMap &attrs)
Y
Yu Yang 已提交
106
      : NetOp(type, inputs, outputs, attrs) {
Y
Yu Yang 已提交
107 108 109
    AppendOp(OpRegistry::CreateOp("mul",
                                  {{"X", {Input("X")}}, {"Y", {Input("W")}}},
                                  {{"Out", {Output("mul_result")}}}, {}));
110
    auto input_b = Inputs("b");
Y
Yu Yang 已提交
111
    std::string before_act = "mul_result";
112
    if (input_b.size() != 0) {
Y
Yu Yang 已提交
113
      AppendOp(OpRegistry::CreateOp(
114
          "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
Y
Yu Yang 已提交
115
          {{"Out", {Output("add_result")}}}, {}));
Y
Yu Yang 已提交
116 117 118
      before_act = "add_result";
    } else {
      auto out_varname = Output("add_result");
119 120
      if (out_varname != kEmptyVarName) {
        this->Rename(out_varname, kEmptyVarName);
Y
Yu Yang 已提交
121
      }
Y
Yu Yang 已提交
122
    }
Y
Yu Yang 已提交
123

Y
Yu Yang 已提交
124 125
    AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
                                  {{"Out", {Output("Out")}}}, {}));
Y
Yu Yang 已提交
126 127 128 129 130 131 132 133 134 135 136
    CompleteAddOp(false);
  }
};

class FcOpMaker : public OpProtoAndCheckerMaker {
 public:
  FcOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("W", "w");
    AddInput("b", "b");
Y
Yu Yang 已提交
137 138
    AddOutput("mul_result", "").AsIntermediate();
    AddOutput("add_result", "").AsIntermediate();
Y
Yu Yang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    AddOutput("Out", "");
    AddComment("");
  }
};

class ManyOutputOpMaker : public OpProtoAndCheckerMaker {
 public:
  ManyOutputOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("x", "x");
    AddOutput("y", "y");
    AddOutput("z", "z");
    AddComment("");
  }
};

class FillZeroOpMaker : public OpProtoAndCheckerMaker {
 public:
  FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
D
dangqingqing 已提交
159 160
    AddInput("X", "x");
    AddOutput("Y", "out");
Y
Yu Yang 已提交
161 162 163
    AddComment("");
  }
};
Y
Yu Yang 已提交
164

D
dongzhihong 已提交
165
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
166
 public:
D
dongzhihong 已提交
167
  SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
Y
Yu Yang 已提交
168
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
169 170
    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
    AddOutput("Out", "the output tensor of sum operator.");
Y
Yu Yang 已提交
171 172 173
    AddComment("");
  }
};
D
dongzhihong 已提交
174

F
fengjiayi 已提交
175 176 177 178 179 180 181 182 183 184 185 186
class MultInOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  MultInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "x");
    AddInput("H", "h");
    AddOutput("Y", "y");
    AddOutput("Z", "z");
    AddComment("");
  }
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
class MinusGradOpDescMaker : public GradOpDescMakerBase {
 public:
  using GradOpDescMakerBase::GradOpDescMakerBase;

  std::vector<std::unique_ptr<OpDescBind>> operator()() const override {
    std::vector<std::unique_ptr<OpDescBind>> retv;
    auto x_g = InputGrad("X");
    if (!x_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", x_g);
      op_desc->SetAttr("scale", 1.0f);
      retv.emplace_back(op_desc);
    }

    auto y_g = InputGrad("Y");
    if (!y_g.empty()) {
      auto *op_desc = new OpDescBind();
      op_desc->SetType("scale");
      op_desc->SetInput("X", OutputGrad("Out"));
      op_desc->SetOutput("Out", y_g);
      op_desc->SetAttr("scale", -1.0f);
      retv.emplace_back(op_desc);
    }
    return retv;
  }
};

class MinusOpMaker : public OpProtoAndCheckerMaker {
 public:
  MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "");
    AddInput("Y", "");
    AddOutput("Out", "");
    AddComment("minus for unittest");
  }
};
Y
Yu Yang 已提交
226 227 228 229
}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
D
dongzhihong 已提交
230
namespace ops = paddle::operators;
Y
Yu Yang 已提交
231
using EnforceNotMet = paddle::platform::EnforceNotMet;
Q
Qiao Longfei 已提交
232 233
// rowwise_add
REGISTER_OPERATOR(rowwise_add, f::NoneOp, f::RowWiseAddOpMaker,
234
                  f::RowWiseAddGradMaker);
Q
Qiao Longfei 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
REGISTER_OP_CPU_KERNEL(rowwise_add,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OPERATOR(rowwise_add_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(rowwise_add_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// mul
REGISTER_OP(mul, f::NoneOp, f::MulOpMaker, mul_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(mul, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mul_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// sigmoid
REGISTER_OP(sigmoid, f::NoneOp, f::SigmoidOpMaker, sigmoid_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sigmoid,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NoneOp, f::NoGradOpMaker);
// fill_zeros_like
REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NoneOp, f::FillZeroOpMaker);
REGISTER_OP_CPU_KERNEL(fill_zeros_like,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// sum
REGISTER_OP(sum, f::NoneOp, f::SumOpMaker, sum_grad, f::NoneOp);
REGISTER_OP_CPU_KERNEL(sum, f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sum_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// fc
F
fengjiayi 已提交
260
REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker);
Q
Qiao Longfei 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
// many_output_op
REGISTER_OP(many_output_op, f::NoneOp, f::ManyOutputOpMaker,
            many_output_op_grad, f::NoneOp);
// mult_in_out
REGISTER_OP(mult_in_out, f::NoneOp, f::MultInOutOpMaker, mult_in_out_grad,
            f::NoneOp);
REGISTER_OP_CPU_KERNEL(mult_in_out,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(mult_in_out_grad,
                       f::NoneKernel<paddle::platform::CPUPlace, float>);
// minus
REGISTER_OPERATOR(minus, f::NoneOp, f::MinusOpMaker, f::MinusGradOpDescMaker);
REGISTER_OP_CPU_KERNEL(minus, f::NoneKernel<paddle::platform::CPUPlace, float>);
// scale
REGISTER_OPERATOR(scale, f::NoneOp);
REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel<paddle::platform::CPUPlace, float>);
Y
Yu Yang 已提交
277

278 279 280 281 282 283 284 285 286 287
TEST(Backward, simple_op_not_need_grad) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  ASSERT_NE(fwd, nullptr);
  auto gop = f::Backward(*fwd, {"x"});
  ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);

  auto no_input_gop = f::Backward(*fwd, {"x", "b"});
  ASSERT_NE(no_input_gop, nullptr);
  ASSERT_TRUE(no_input_gop->IsNetOp());
Y
Yu Yang 已提交
288
  ASSERT_EQ(0UL, static_cast<ops::NetOp *>(no_input_gop.get())->ops_.size());
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

TEST(Backward, net_fc_backward_normal) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_re"}},
                               {"Out", {"out"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(3UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
308
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
309 310

  f::OperatorBase &d_add = *net->ops_[1];
Q
qiaolongfei 已提交
311
  ASSERT_EQ("rowwise_add_grad", d_add.Type());
312 313

  f::OperatorBase &d_mul = *net->ops_[2];
Q
qiaolongfei 已提交
314
  ASSERT_EQ("mul_grad", d_mul.Type());
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
}

TEST(Backward, net_fc_backward_not_have_b) {
  std::shared_ptr<f::OperatorBase> fwd =
      f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
                              {{"mul_result", {"mul_res"}},
                               {"add_result", {"add_res"}},
                               {"Out", {"tmp"}}},
                              {});
  ASSERT_NE(fwd, nullptr);
  std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
  ASSERT_TRUE(gop->IsNetOp());
  auto net = static_cast<ops::NetOp *>(gop.get());

  ASSERT_NO_THROW(net->DebugString());

  ASSERT_EQ(2UL, net->ops_.size());

  f::OperatorBase &d_sigmoid = *net->ops_[0];
Q
qiaolongfei 已提交
334
  ASSERT_EQ("sigmoid_grad", d_sigmoid.Type());
335 336

  f::OperatorBase &d_mul = *net->ops_[1];
Q
qiaolongfei 已提交
337
  ASSERT_EQ("mul_grad", d_mul.Type());
338 339 340 341
}

TEST(Backward, net_input_of_network_not_need_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
342
  net.AppendOp(f::OpRegistry::CreateOp(
343 344 345 346 347
      "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_tmp_0"}},
       {"add_result", {"add_tmp_0"}},
       {"Out", {"hidden0"}}},
      {}));
Y
Yu Yang 已提交
348
  net.AppendOp(f::OpRegistry::CreateOp(
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
      "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_tmp_1"}},
       {"add_result", {"add_tmp_1"}},
       {"Out", {"hidden1"}}},
      {}));
  net.CompleteAddOp();
  auto bwd = Backward(net, {"x"});  // x@GRAD is not need.
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());

  auto output_vars = bwd_net->OutputVars(true);
  std::unordered_set<std::string> all_outputs =
      std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
  all_outputs.erase(f::kEmptyVarName);

  for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
    ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
  }

  // Not Generated X
  ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());

  ASSERT_EQ(2UL, bwd_net->ops_.size());
  ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
  auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
  ASSERT_EQ(3UL, first_fc_grad->ops_.size());
  ASSERT_EQ(f::kEmptyVarName,
            first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
}

TEST(Backward, net_shared_weight) {
  ops::NetOp net;
Y
Yu Yang 已提交
381 382 383 384
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
                                       {{"Out", {"out"}}}, {}));
  net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
                                       {{"Out", {"FinalOut"}}}, {}));
385 386 387 388 389 390
  net.CompleteAddOp();

  auto bwd = f::Backward(net, {});
  ASSERT_TRUE(bwd->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
  ASSERT_EQ(3UL, bwd_net->ops_.size());
D
dongzhihong 已提交
391
  ASSERT_EQ("sum", bwd_net->ops_[2]->Type());
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
}

TEST(Backward, op_all_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"x", "b"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_all_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp(
      "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"out"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_TRUE(net->ops_.empty());
}

TEST(Backward, op_part_of_output_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
                                     {{"y", {"Y"}}, {"z", {"Z"}}}, {});
  auto backward = f::Backward(*fwd, {"Z"});
  ASSERT_TRUE(backward->IsNetOp());
  auto net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(net->ops_.size(), 2UL);

  auto &fill_zero = *net->ops_[0];
Q
qiaolongfei 已提交
421
  ASSERT_EQ("fill_zeros_like", fill_zero.Type());
D
dangqingqing 已提交
422 423 424 425
  ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
  ASSERT_EQ("Z", fill_zero.Input("X"));
  ASSERT_EQ(1UL, fill_zero.Outputs("Y").size());
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y"));
426 427

  auto &d_many_out = *net->ops_[1];
Q
qiaolongfei 已提交
428 429
  ASSERT_EQ("many_output_op_grad", d_many_out.Type());
  ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.Inputs().size());  // I/O/OG
430 431 432 433 434 435 436 437 438 439 440
  ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
            d_many_out.Input(f::GradVarName("z")));
  ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
  ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
}

TEST(Backward, op_part_of_input_are_not_need) {
  auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
                                     {{"Out", {"out"}}}, {});
  auto backward = f::Backward(*fwd, {"a"});
  auto &grad_mul = *backward;
Q
qiaolongfei 已提交
441 442 443
  ASSERT_EQ(grad_mul.Type(), "mul_grad");
  ASSERT_EQ(grad_mul.Inputs().size(), 2UL + 1UL + 1UL);
  ASSERT_EQ(grad_mul.Outputs().size(), 2UL);
444 445 446 447 448 449 450 451 452 453
  ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
  ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
  ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
  ASSERT_EQ(grad_mul.Input("X"), "a");
  ASSERT_EQ(grad_mul.Input("Y"), "b");
  ASSERT_EQ(grad_mul.Input("Out"), "out");
}

TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
  ops::NetOp net;
Y
Yu Yang 已提交
454
  net.AppendOp(f::OpRegistry::CreateOp(
455 456 457 458 459
      "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
      {{"mul_result", {"mul_out1"}},
       {"add_result", {"add_out1"}},
       {"Out", {"out1"}}},
      {}));
Y
Yu Yang 已提交
460
  net.AppendOp(f::OpRegistry::CreateOp(
461 462 463 464 465
      "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
      {{"mul_result", {"mul_out2"}},
       {"add_result", {"tmp_out2"}},
       {"Out", {"out2"}}},
      {}));
Y
Yu Yang 已提交
466
  net.AppendOp(f::OpRegistry::CreateOp(
467 468 469 470 471 472 473 474 475 476 477 478
      "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
      {{"mul_result", {"mul_out3"}},
       {"add_result", {"tmp_out3"}},
       {"Out", {"out3"}}},
      {}));
  net.CompleteAddOp();

  auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
  ASSERT_TRUE(backward->IsNetOp());
  auto bwd_net = static_cast<ops::NetOp *>(backward.get());
  ASSERT_EQ(bwd_net->ops_.size(), 3UL);
  auto &grad_fc = *bwd_net->ops_[0];
Y
Yu Yang 已提交
479 480

  const char *all = paddle::operators::NetOp::kAll;
Q
qiaolongfei 已提交
481
  EXPECT_EQ(grad_fc.Inputs(all).size(),
482 483 484
            2UL       /* external input number */
                + 1UL /* external output number*/
                + 1UL /* number of gradient of external output*/
485 486
                + 2UL /* internal variable number*/
            );
Q
qiaolongfei 已提交
487
  EXPECT_EQ(grad_fc.Outputs(all).size(),
488
            2UL       /* input number of mul*/
489 490 491
                + 2UL /* input number of rowwise_add*/
                + 1UL /* input number of sigmod */
                - 1UL /* out2 is not needed*/);
Q
qiaolongfei 已提交
492 493 494 495
  EXPECT_EQ(bwd_net->ops_[1]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[1]->Outputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Inputs(all).size(), 0UL);
  EXPECT_EQ(bwd_net->ops_[2]->Outputs(all).size(), 0UL);
496
}
497 498

TEST(Backward, simple_single_op) {
499
  f::ProgramDescBind program;
500
  f::BlockDescBind *block = program.Block(0);
Q
Qiao Longfei 已提交
501

502 503 504 505 506 507
  f::OpDescBind *op = block->AppendOp();
  op->SetType("rowwise_add");
  op->SetInput("X", {"x"});
  op->SetInput("b", {"b"});
  op->SetOutput("Out", {"out"});

508
  auto target = f::VarDescBind("out");
F
fengjiayi 已提交
509
  auto var_to_grad = AppendBackward(program, target, {});
510

511 512 513 514 515
  ASSERT_EQ(block->AllOps().size(), 3UL);
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
516 517 518 519 520 521 522 523 524
  EXPECT_EQ(grad_op->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x")}));
  EXPECT_EQ(grad_op->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b")}));
F
fengjiayi 已提交
525

Q
Qiao Longfei 已提交
526
  EXPECT_EQ(var_to_grad.size(), 3UL);
F
fengjiayi 已提交
527 528 529 530 531
  EXPECT_EQ(var_to_grad.at("b"), f::GradVarInfo(f::GradVarName("b"), 0, 2));
  EXPECT_EQ(var_to_grad.at("x"), f::GradVarInfo(f::GradVarName("x"), 0, 2));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x")));
532 533
}

F
fengjiayi 已提交
534
TEST(Backward, default_attribute) {
535
  f::ProgramDescBind program;
F
fengjiayi 已提交
536 537 538 539 540 541
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op = block->AppendOp();
  op->SetType("mul");
  op->SetInput("X", {"x"});
  op->SetInput("Y", {"y"});
  op->SetOutput("Out", {"out"});
542
  op->CheckAttrs();
F
fengjiayi 已提交
543

544 545
  auto target = f::VarDescBind("out");
  AppendBackward(program, target, {});
F
fengjiayi 已提交
546

547
  ASSERT_EQ(block->AllOps().size(), 3UL);
F
fengjiayi 已提交
548 549 550
  EXPECT_EQ(boost::get<int>(op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(op->GetAttr("y_num_col_dims")), 1);

551 552 553 554
  f::OpDescBind *fill_op = block->AllOps()[1];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op = block->AllOps()[2];
F
fengjiayi 已提交
555 556 557 558 559
  ASSERT_EQ(grad_op->Type(), "mul_grad");
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("x_num_col_dims")), 1);
  EXPECT_EQ(boost::get<int>(grad_op->GetAttr("y_num_col_dims")), 1);
}

560
TEST(Backward, simple_mult_op) {
561
  f::ProgramDescBind program;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

581 582
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
583
  auto var_to_grad = AppendBackward(program, target, {});
584

585 586 587 588 589
  ASSERT_EQ(block->AllOps().size(), 6UL + 1);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
590 591 592 593 594 595 596 597 598 599
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

600
  f::OpDescBind *grad_op2 = block->AllOps()[5];
601 602 603 604 605 606 607 608 609 610 611 612 613
  EXPECT_EQ(grad_op2->Type(), "mul_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

614
  f::OpDescBind *grad_op3 = block->AllOps()[4];
615 616 617 618 619 620 621 622 623
  EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));
F
fengjiayi 已提交
624

Q
Qiao Longfei 已提交
625
  EXPECT_EQ(var_to_grad.size(), 7UL);
F
fengjiayi 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out2"),
            f::GradVarInfo(f::GradVarName("out2"), 0, 4));
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
F
fengjiayi 已提交
641 642 643
}

TEST(Backward, intermedia_var_no_grad) {
644
  f::ProgramDescBind program;
F
fengjiayi 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"x2"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out2"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

  f::OpDescBind *op4 = block->AppendOp();
  op4->SetType("mul");
  op4->SetInput("X", {"out1"});
  op4->SetInput("Y", {"out3"});
  op4->SetOutput("Out", {"out4"});

670 671
  auto target = f::VarDescBind("out4");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
672
  auto var_to_grad = AppendBackward(program, target, {"out3"});
F
fengjiayi 已提交
673

674 675 676 677 678
  ASSERT_EQ(block->AllOps().size(), 7UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op1 = block->AllOps()[6];
F
fengjiayi 已提交
679 680 681 682 683 684 685 686 687 688
  EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));

689
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
690 691 692 693 694 695 696 697 698 699
  EXPECT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"out3"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out4"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out4")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1")}));
700
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector<std::string>());
F
fengjiayi 已提交
701

Q
Qiao Longfei 已提交
702
  EXPECT_EQ(var_to_grad.size(), 4UL);
F
fengjiayi 已提交
703 704 705 706 707 708 709 710
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
F
fengjiayi 已提交
711 712 713
}

TEST(Backward, var_no_grad) {
714
  f::ProgramDescBind program;
F
fengjiayi 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("mult_in_out");
  op1->SetInput("X", {"x1"});
  op1->SetInput("H", {"h1"});
  op1->SetOutput("Y", {"y1"});
  op1->SetOutput("Z", {"z1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mult_in_out");
  op2->SetInput("X", {"y1"});
  op2->SetInput("H", {"z1"});
  op2->SetOutput("Y", {"y2"});
  op2->SetOutput("Z", {"z2"});

730 731
  auto target = f::VarDescBind("z2");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
732
  auto var_to_grad = AppendBackward(program, target, {"z1"});
F
fengjiayi 已提交
733

734 735 736 737 738
  ASSERT_EQ(block->AllOps().size(), 6UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op2 = block->AllOps()[3];
F
fengjiayi 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751
  ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op2->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op2->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op2->Input("X"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op2->Input("H"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op2->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op2->Input("Z"), std::vector<std::string>({"z2"}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));
  EXPECT_EQ(grad_op2->Input(f::GradVarName("Z")),
            std::vector<std::string>({f::GradVarName("z2")}));
  EXPECT_EQ(grad_op2->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("y1")}));
752
  EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector<std::string>());
F
fengjiayi 已提交
753

754
  f::OpDescBind *fill_zero_op = block->AllOps()[4];
F
fengjiayi 已提交
755 756 757 758 759 760 761
  ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like");
  ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL);
  ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL);
  EXPECT_EQ(fill_zero_op->Input("X"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(fill_zero_op->Output("Y"),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));

762
  f::OpDescBind *grad_op1 = block->AllOps()[5];
F
fengjiayi 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 6UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input("X"), std::vector<std::string>({"x1"}));
  EXPECT_EQ(grad_op1->Input("H"), std::vector<std::string>({"h1"}));
  EXPECT_EQ(grad_op1->Input("Y"), std::vector<std::string>({"y1"}));
  EXPECT_EQ(grad_op1->Input("Z"), std::vector<std::string>({"z1"}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y1")}));
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Z")),
            std::vector<std::string>({std::string("z1") + f::kZeroVarSuffix}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("H")),
            std::vector<std::string>({f::GradVarName("h1")}));
F
fengjiayi 已提交
778

Q
Qiao Longfei 已提交
779
  EXPECT_EQ(var_to_grad.size(), 4UL);
F
fengjiayi 已提交
780 781 782 783 784 785 786
  EXPECT_EQ(var_to_grad.at("y1"), f::GradVarInfo(f::GradVarName("y1"), 0, 3));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 5));
  EXPECT_EQ(var_to_grad.at("h1"), f::GradVarInfo(f::GradVarName("h1"), 0, 5));

  EXPECT_TRUE(block->HasVar(f::GradVarName("y1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("h1")));
F
fengjiayi 已提交
787 788 789
}

TEST(Backward, shared_var) {
790
  f::ProgramDescBind program;
F
fengjiayi 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
  f::BlockDescBind *block = program.Block(0);
  f::OpDescBind *op1 = block->AppendOp();
  op1->SetType("rowwise_add");
  op1->SetInput("X", {"x1"});
  op1->SetInput("b", {"b1"});
  op1->SetOutput("Out", {"out1"});

  f::OpDescBind *op2 = block->AppendOp();
  op2->SetType("mul");
  op2->SetInput("X", {"out1"});
  op2->SetInput("Y", {"y2"});
  op2->SetOutput("Out", {"out2"});

  f::OpDescBind *op3 = block->AppendOp();
  op3->SetType("rowwise_add");
  op3->SetInput("X", {"out1"});
  op3->SetInput("b", {"b3"});
  op3->SetOutput("Out", {"out3"});

810 811
  auto target = f::VarDescBind("out3");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
812
  auto var_to_grad = AppendBackward(program, target, {});
F
fengjiayi 已提交
813

814 815 816 817 818
  ASSERT_EQ(block->AllOps().size(), 8UL);
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");

  f::OpDescBind *grad_op3 = block->AllOps()[4];
F
fengjiayi 已提交
819 820 821 822 823 824 825 826 827 828
  ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op3->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op3->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op3->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out3")}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0"}));
  EXPECT_EQ(grad_op3->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b3")}));

829
  f::OpDescBind *grad_op4 = block->AllOps()[5];
F
fengjiayi 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
  ASSERT_EQ(grad_op4->Type(), "mul_grad");
  ASSERT_EQ(grad_op4->InputNames().size(), 4UL);
  ASSERT_EQ(grad_op4->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op4->Input("X"), std::vector<std::string>({"out1"}));
  EXPECT_EQ(grad_op4->Input("Y"), std::vector<std::string>({"y2"}));
  EXPECT_EQ(grad_op4->Input("Out"), std::vector<std::string>({"out2"}));
  EXPECT_EQ(grad_op4->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out2")}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")),
            std::vector<std::string>({f::GradVarName("y2")}));

843
  f::OpDescBind *sum_op = block->AllOps()[6];
F
fengjiayi 已提交
844 845 846 847 848 849 850 851 852
  ASSERT_EQ(sum_op->Type(), "sum");
  ASSERT_EQ(sum_op->InputNames().size(), 1UL);
  ASSERT_EQ(sum_op->OutputNames().size(), 1UL);
  EXPECT_EQ(sum_op->Input("X"),
            std::vector<std::string>({f::GradVarName("out1") + "@RENAME@0",
                                      f::GradVarName("out1") + "@RENAME@1"}));
  EXPECT_EQ(sum_op->Output("Out"),
            std::vector<std::string>({f::GradVarName("out1")}));

853
  f::OpDescBind *grad_op1 = block->AllOps()[7];
F
fengjiayi 已提交
854 855 856 857 858 859 860 861 862
  ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad");
  ASSERT_EQ(grad_op1->InputNames().size(), 1UL);
  ASSERT_EQ(grad_op1->OutputNames().size(), 2UL);
  EXPECT_EQ(grad_op1->Input(f::GradVarName("Out")),
            std::vector<std::string>({f::GradVarName("out1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("X")),
            std::vector<std::string>({f::GradVarName("x1")}));
  EXPECT_EQ(grad_op1->Output(f::GradVarName("b")),
            std::vector<std::string>({f::GradVarName("b1")}));
F
fengjiayi 已提交
863

Q
Qiao Longfei 已提交
864
  EXPECT_EQ(var_to_grad.size(), 6UL);
F
fengjiayi 已提交
865 866 867 868 869 870 871 872 873 874 875 876
  EXPECT_EQ(var_to_grad.at("b3"), f::GradVarInfo(f::GradVarName("b3"), 0, 4));
  EXPECT_EQ(var_to_grad.at("y2"), f::GradVarInfo(f::GradVarName("y2"), 0, 5));
  EXPECT_EQ(var_to_grad.at("out1"),
            f::GradVarInfo(f::GradVarName("out1"), 0, 6));
  EXPECT_EQ(var_to_grad.at("x1"), f::GradVarInfo(f::GradVarName("x1"), 0, 7));
  EXPECT_EQ(var_to_grad.at("b1"), f::GradVarInfo(f::GradVarName("b1"), 0, 7));

  EXPECT_TRUE(block->HasVar(f::GradVarName("b3")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("y2")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("out1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("x1")));
  EXPECT_TRUE(block->HasVar(f::GradVarName("b1")));
877 878 879
}

TEST(Backward, half_backward) {
880
  f::ProgramDescBind program;
881 882 883 884 885 886 887
  f::BlockDescBind *block = program.Block(0);
  auto *op1 = block->AppendOp();
  op1->SetType("minus");
  op1->SetInput("X", {"a"});
  op1->SetInput("Y", {"b"});
  op1->SetOutput("Out", {"out"});

888 889
  auto target = f::VarDescBind("out");
  size_t forward_len = block->AllOps().size();
F
fengjiayi 已提交
890
  auto var_to_grad = AppendBackward(program, target, {"b"});
891 892
  f::OpDescBind *fill_op = block->AllOps()[forward_len];
  EXPECT_EQ(fill_op->Type(), "fill_constant");
893
  auto ops = block->AllOps();
894
  ASSERT_EQ(3UL, ops.size());
F
fengjiayi 已提交
895

Q
Qiao Longfei 已提交
896
  EXPECT_EQ(var_to_grad.size(), 2UL);
F
fengjiayi 已提交
897 898
  EXPECT_EQ(var_to_grad.at("a"),
            f::GradVarInfo(f::GradVarName("a"), 0, forward_len + 1));
899
}