config_base.py 2.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
import collections

from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import paddle.trainer_config_helpers as conf_helps


class Layer(object):
    def __init__(self, name=None, parent_layers=None):
        assert isinstance(parent_layers, dict)
        self.name = name
        self.__parent_layers__ = parent_layers

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.name is None:
            return self.to_proto_impl(**kwargs)
        elif self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)

        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
    else:
        wrapper = None

    class V2LayerImpl(Layer):
        def __init__(self, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

            name = kwargs.get('name', None)
            super(V2LayerImpl, self).__init__(name, parent_layers)
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(**args)

    return V2LayerImpl