api_base.py 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
34
        #     out_size_expr : [], expression for getting size of vector<Tensor>
35 36
        #     return_type : Tensor, vector<Tensor>, ..., the return type of api
        # args_str:
37 38
        #     args_declare : "str" // str of function params with default value. Example: (..., bool flag=false)
        #     args_define : "str" // str of function params without default value. Example: (..., bool flag)
39
        self.inputs, self.attrs, self.outputs, self.args_str, self.optional_vars = self.parse_args(
40 41 42 43 44 45 46
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
47 48 49
            if 'infer_meta' in api_item_yaml:
                self.infer_meta = self.parse_infer_meta(api_item_yaml[
                    'infer_meta'])
50 51 52 53
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
                'func']) == 1 else True
            self.data_transform = self.parse_data_transform(api_item_yaml)
54 55
            self.inplace_map, self.view_map = self.parse_inplace_and_view(
                api_item_yaml)
56 57 58 59

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

60 61 62
    def get_api_func_name(self):
        return self.api

63
    def parse_args(self, api_name, api_item_yaml):
64 65 66 67 68
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
69
        inputs, attrs, args_str = self.parse_input_and_attr(
70
            api_name, api_item_yaml['args'], optional_vars)
71
        output_type_list, output_names, out_size_expr, return_type = self.parse_output(
72 73 74 75
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
76
            'out_size_expr': out_size_expr,
77
            'return_type': return_type
78
        }, args_str, optional_vars
79

80
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
81 82 83 84 85 86 87
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
88 89 90 91
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
92
        attr_types_map = {
93
            'IntArray': 'const IntArray&',
94
            'Scalar': 'const Scalar&',
95 96 97 98
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
99
            'int': 'int',
100 101
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
102 103 104 105 106
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
            'double': 'double',
            'bool': 'bool',
107
            'str': 'const std::string&',
108
            'Place': 'const Place&',
109 110
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
111 112
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
113 114
        }
        optional_types_trans = {
H
hong 已提交
115
            'Tensor': 'paddle::optional<const Tensor&>',
116 117
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
118 119
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
120 121 122
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
123
            'Place': 'paddle::optional<const Place&>',
124
            'DataLayout': 'paddle::optional<DataLayout>',
125
            'DataType': 'paddle::optional<DataType>'
126 127
        }

128 129 130 131 132
        args_declare_str = ""
        args_define_str = ""

        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
133
            type_and_name = item.split(' ')
134 135
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
136 137 138
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
139 140 141 142 143
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

144 145 146
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

147 148 149 150 151 152 153 154 155 156
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    args_declare_str = args_declare_str + in_type + ' ' + input_name + ', '
                    args_define_str = args_define_str + in_type + ' ' + input_name + ', '
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
157 158 159
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
160 161 162 163 164 165 166 167
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

168 169 170
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

171 172 173 174 175 176 177 178 179 180 181 182 183 184
                    default_value_str = "" if default_value is None else '=' + default_value
                    args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', '
                    args_define_str = args_define_str + attr_type + ' ' + attr_name + ', '
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

        return inputs, attrs, {
            'args_declare': args_declare_str[:-2],
            'args_define': args_define_str[:-2]
        }

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
185 186 187 188
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
189 190 191 192 193 194 195 196 197 198 199 200 201 202
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
203 204 205 206

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
207
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
208
            return [out_type], [out_name], [size_expr], self.get_return_type(
209
                [out_type])
210 211 212
        else:
            out_type_list = []
            out_name_list = []
213
            out_size_expr_list = []
214
            for output_item in temp_list:
215
                out_type, out_name, size_expr = parse_output_item(output_item)
216 217
                out_type_list.append(out_type)
                out_name_list.append(out_name)
218
                out_size_expr_list.append(size_expr)
219

220
            return out_type_list, out_name_list, out_size_expr_list, self.get_return_type(
221 222
                out_type_list)

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
242 243
            'data_type': None,
            'use_cudnn': 'false'
244 245 246 247 248 249 250 251 252
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
Z
zyfncg 已提交
253 254 255 256
        if 'use_cudnn' in kernel_config:
            kernel['use_cudnn'] = kernel_config['use_cudnn']
            if isinstance(kernel['use_cudnn'], bool):
                kernel['use_cudnn'] = str(kernel['use_cudnn']).lower()
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        kernel['func'] = [
            kernel_fn.strip() for kernel_fn in kernel_config['func'].split(',')
        ]

        if len(kernel['func']) == 2:
            assert kernel['func'][0] == self.api, \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of first func should be same with api name({self.api}), \
                      but now is {kernel['func'][0]}."
            assert kernel['func'][1].endswith('_sr'), \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of second func should be a selected_rows kernel (the func name endwith '_sr'), \
                      but now is {kernel['func'][1]}."

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    def parse_inplace_and_view(self, api_item_yaml):
        inplace_map, view_map = None, None
        for mode in ['inplace', 'view']:
            if mode in api_item_yaml:
                if mode == 'inplace':
                    inplace_map = {}
                else:
                    view_map = {}
                in_out_mapping_list = api_item_yaml[mode].split(',')
                for item in in_out_mapping_list:
                    result = re.search(r"(?P<in>\w+)\s*->\s(?P<out>\w+)", item)
                    in_val = result.group('in')
                    out_val = result.group('out')
                    assert in_val in self.inputs['names'], \
                        f"{self.api} : {mode} input error: the input var name('{in_val}') is not found in the input args of {self.api}."
                    assert out_val in self.outputs['names'], \
                        f"{self.api} : {mode} output error: the output var name('{out_val}') is not found in the output args of {self.api}."

                    if mode == 'inplace':
                        inplace_map[out_val] = in_val
                    else:
                        view_map[out_val] = in_val

        return inplace_map, view_map
307

308 309 310 311 312 313
    # Override by child class
    def get_return_type(self, out_type_list):
        return None

    def gene_api_declaration(self):
        api_declaration = f"""
314
PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name()}({self.args_str['args_declare']});
315 316 317 318
"""

        if self.is_base_api and self.inplace_map is not None:
            api_declaration = api_declaration + f"""
319
PADDLE_API {self.gene_return_type_code()} {self.get_api_func_name() + '_'}({self.args_str['args_declare']});
320 321 322 323
"""

        return api_declaration

324 325 326 327 328 329 330 331 332
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
333
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
365
            if attrs['attr_info'][attr_name][0] == 'const Place&':
366
                assert kernel['backend'] is not None, \
367
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
368 369 370 371 372 373 374 375 376 377 378
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
379
        kernel_select_code = self.gene_kernel_backend_select()
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
424
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
425
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
426 427 428 429 430 431 432 433 434 435 436

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
437 438
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
439
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
440 441
"""

442 443 444 445 446
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
447
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
448 449 450 451 452 453 454 455 456 457 458 459 460
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

461
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
462 463 464 465
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

466 467
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
468 469 470 471 472
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
473 474 475 476 477
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
478
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
479
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
480 481 482 483 484 485 486
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
487
                    meta_tensor_code = meta_tensor_code + f"""
H
hong 已提交
488
{code_indent}  paddle::optional<const phi::MetaTensor&> {PREFIX_TENSOR_NAME}meta_ref_{param} = paddle::none;
489 490
{code_indent}  phi::DenseTensor {param}_dt;
{code_indent}  phi::MetaTensor {PREFIX_TENSOR_NAME}meta_tmp_{param}({param}_dt);
H
hong 已提交
491 492 493 494 495 496
{code_indent}  if ({PREFIX_TENSOR_NAME}{param}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dtype( {PREFIX_TENSOR_NAME}{param}_ptr->dtype() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_dims( {PREFIX_TENSOR_NAME}{param}_ptr->dims() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_tmp_{param}.set_layout( {PREFIX_TENSOR_NAME}{param}_ptr->layout() );
{code_indent}    {PREFIX_TENSOR_NAME}meta_ref_{param} =  {PREFIX_TENSOR_NAME}meta_tmp_{param};
{code_indent}  }}\n"""
497 498 499

                    param_code = param_code + f"{PREFIX_TENSOR_NAME}meta_ref_{param}, "
                else:
500 501 502
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
503 504 505 506 507 508 509 510 511
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
{code_indent}    {out_name}_metas[i] = &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i];
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
                param_code = param_code + "&" + out_name.replace(
                    'kernel_', PREFIX_META_TENSOR_NAME) + ", "

529 530
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
531
{code_indent}  phi::{infer_meta['func']}({param_code});
532 533
"""

534
    def get_kernel_args(self, code_indent):
535
        input_trans_map = {
536
            'const Tensor&': 'const phi::DenseTensor&',
537
            'const std::vector<Tensor>&':
538
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
539 540 541
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
            'paddle::optional<const Tensor&>':
542 543 544
            'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
545 546
        }
        out_trans_map = {
547 548
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
549 550 551 552 553 554 555 556 557 558 559
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
560
        kernel_idx = -1
561 562 563
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
564
                kernel_idx = kernel_idx + 1
565 566 567 568 569
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
570 571 572
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
573
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = PrepareData({input_name}, kernel.InputAt({kernel_idx}), {trans_flag});
574 575 576 577 578
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
579 580
                    if self.inputs['input_info'][input_name] == "const Tensor&":
                        input_tensor_code = input_tensor_code + f"""
581
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_idx}), {trans_flag});"""
582

583 584 585
                    elif self.inputs['input_info'][
                            input_name] == "const std::vector<Tensor>&":
                        input_tensor_code = input_tensor_code + f"""
586
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_idx}), {trans_flag});
587 588 589 590 591 592 593 594
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

                    else:
                        # do nothing
                        pass
595 596
            elif self.infer_meta[
                    'param'] is None or input_name in self.infer_meta['param']:
597 598 599 600 601 602 603 604 605 606
                if input_name in self.optional_vars:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToDenseTensor({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::DenseTensor&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

                else:
                    input_tensor_code = input_tensor_code + f"""
607 608 609 610 611
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
612 613 614
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
615 616 617
                    if self.inputs['input_info'][param] == "const Tensor&":
                        kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                    elif self.inputs['input_info'][
618
                            param] == "const std::vector<Tensor>&":
619 620 621 622
                        kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                    else:
                        # do nothing
                        pass
623 624
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
625 626
            elif param in attr_names:
                # set attr for kernel_context
627 628 629
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
630
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
631 632
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
651
            'const Tensor&': 'const phi::SelectedRows&',
652 653
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::SelectedRows&>'
654
        }
655
        out_trans_map = {'Tensor': 'phi::SelectedRows*'}
656 657 658 659 660 661 662 663 664 665 666 667
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
668 669 670 671 672 673 674 675 676 677 678
            if input_name in self.optional_vars:
                input_tensor_code = input_tensor_code + f"""

{code_indent}  {input_trans_map[input_infos[input_name]]} {PREFIX_TENSOR_NAME}{input_name}(paddle::none);
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_ptr = TensorToSelectedRows({input_name});
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_ptr) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::make_optional<const phi::SelectedRows&>(*{PREFIX_TENSOR_NAME}{input_name}_ptr);
{code_indent}  }}"""

            else:
                input_tensor_code = input_tensor_code + f"""
679
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
680 681 682 683

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
684 685 686 687 688 689
                if param in self.optional_vars:
                    kernel_args = kernel_args + PREFIX_TENSOR_NAME + param + ", "
                else:
                    kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_in_type = input_trans_map[input_infos[param]]
                kernel_args_type_list.append(kernel_in_type)
690 691
            elif param in attr_names:
                # set attr for kernel_context
692 693 694
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
695
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
696 697
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

714 715 716 717 718 719 720 721
    # Override by child class
    def gene_return_type_code(self):
        return self.outputs['return_type']

    # Override by child class
    def gene_return_code(self):
        return "api_output"

722
    # Override by child class
723 724 725 726 727
    def gene_output(self,
                    output_type_list,
                    set_out_func,
                    code_indent,
                    inplace_flag=False):
728 729
        return None, None, None

730
    def gen_dense_tensor_kernel_code(self, code_indent, inplace_flag=False):
731 732 733
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
734
            self.outputs['types'], 'SetKernelOutput', code_indent, inplace_flag)
735
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
Z
zyfncg 已提交
736 737
        cudnn_args = '' if self.kernel[
            'use_cudnn'] == 'false' else ', ' + self.kernel['use_cudnn']
738
        return f"""
F
From00 已提交
739
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
740
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
741
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
742 743 744 745 746 747 748 749 750
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
751
{code_indent}  {{
752
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
753 754
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
755

756
{code_indent}  return {self.gene_return_code()};"""
757

758
    def gen_selected_rows_kernel_code(self, code_indent, inplace_flag=False):
759 760 761
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
762 763
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent,
            inplace_flag)
764
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
765
        return f"""
766
{code_indent}  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
767 768 769 770 771 772 773 774 775 776 777
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
778
{code_indent}  {{
779
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{api_func_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
780 781
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
782

783
{code_indent}  return {self.gene_return_code()};"""
784

785 786 787
    def gene_base_api_code(self, inplace_flag=False):
        api_func_name = self.get_api_func_name() + ('_' if inplace_flag else '')
        api_code = f"""
788
PADDLE_API {self.gene_return_type_code()} {api_func_name}({self.args_str["args_define"]}) {{
789
{self.gene_kernel_select()}
790
"""
791

792 793 794
        if self.support_selected_rows_kernel:
            code_indent = '  '
            return api_code + f"""
795
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
796
{self.gen_dense_tensor_kernel_code(code_indent, inplace_flag)}
797
  }} else {{
798
{self.gen_selected_rows_kernel_code(code_indent, inplace_flag)}
799
  }}
800
}}
801 802
"""

803 804 805 806
        else:
            code_indent = ''
            return api_code + self.gen_dense_tensor_kernel_code(
                code_indent, inplace_flag) + """
807
}
808 809
"""

810 811 812 813 814 815 816
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
            if self.inplace_map is not None:
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        else:
            inveke_func_name = self.invoke.split('(')[0].strip()
            if inveke_func_name in self.attrs['names']:
                # Adjust the param whose name is same with api invoked.
                pattern = r'\W' + inveke_func_name + '[^A-Za-z0-9_(]'

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
                                     self.args_str["args_define"])
            else:
                invoke_code = self.invoke
                params_code = self.args_str["args_define"]
            return f"""
{self.outputs['return_type']} {self.api}({params_code}) {{
  return {invoke_code};
}}
"""