margin_cross_entropy_grad_kernel.cu 9.6 KB
Newer Older
D
duanboqiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// old op include, fluid should be removed
#ifdef PADDLE_WITH_HIP
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#else
#include <cub/cub.cuh>
#endif

#include <vector>
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/impl/softmax_kernel_impl.h"
#include "paddle/phi/kernels/margin_cross_entropy_grad_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
W
Wen Sun 已提交
37
#include "paddle/fluid/distributed/collective/process_group.h"
D
duanboqiang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif
#include "paddle/phi/backends/gpu/gpu_context.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T, typename Context>
void GetClassInterval(const gpuStream_t& stream,
                      const phi::Place& place,
                      const Context& dev_ctx,
                      const int rid,
                      const int rank,
                      const int nranks,
                      const int D,
                      DenseTensor* class_interval) {
  std::vector<int> shard_dim_vec(nranks + 1, 0);
  shard_dim_vec[rank + 1] = D;
  if (nranks <= 1) {
    paddle::framework::TensorFromVector(shard_dim_vec, dev_ctx, class_interval);
    return;
  }
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  DenseTensor num_classes_per_device;
  paddle::framework::TensorFromVector(
      shard_dim_vec, dev_ctx, &num_classes_per_device);
  int* num_classes_per_device_ptr = num_classes_per_device.data<int>();

  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();
  if (map->has(rid)) {
    // Use ProcessGroup
    paddle::distributed::ProcessGroup* pg = map->get(rid);
    std::vector<phi::DenseTensor> in_tensor;
    std::vector<phi::DenseTensor> out_tensor;
    in_tensor.push_back(num_classes_per_device);
    out_tensor.push_back(num_classes_per_device);

    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = paddle::distributed::ReduceOp::SUM;
    auto task = pg->AllReduce(in_tensor, out_tensor, opts);
    task->Wait();
  } else {
    const auto& comm =
        paddle::platform::NCCLCommContext::Instance().Get(rid, place);
    // use global calculate stream
    const auto calcu_stream =
        static_cast<GPUContext*>(
            paddle::platform::DeviceContextPool::Instance().Get(place))
            ->stream();

    PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::ncclAllReduce(
        num_classes_per_device_ptr,
        num_classes_per_device_ptr,
        num_classes_per_device.numel(),
        paddle::platform::ToNCCLDataType(paddle::framework::TransToProtoVarType(
            num_classes_per_device.dtype())),
        ncclSum,
        comm->comm(),
        calcu_stream));
  }

  class_interval->Resize({nranks + 1});
  auto class_interval_ptr = dev_ctx.template Alloc<int>(class_interval);

  size_t cub_temp_storage_bytes = 0;
  cub::DeviceScan::InclusiveSum<int*, int*>(
      nullptr, cub_temp_storage_bytes, nullptr, nullptr, nranks + 1, stream);
  auto cub_temp_storage = paddle::memory::Alloc(place, cub_temp_storage_bytes);
  cub::DeviceScan::InclusiveSum<int*, int*>(cub_temp_storage->ptr(),
                                            cub_temp_storage_bytes,
                                            num_classes_per_device_ptr,
                                            class_interval_ptr,
                                            nranks + 1,
                                            stream);
  return;
#endif
}

template <typename T, typename IndexT>
__global__ void CalculateGrad(T* logits_grad,
                              const T* loss_grad,
                              const T* logits,
                              const IndexT* label,
                              const float margin1,
                              const float margin2,
                              const float scale,
                              const int rank,
                              const int64_t N,
                              const int64_t D,
                              const int* class_interval_ptr) {
  using MPType = typename phi::dtype::MPTypeTrait<T>::Type;
  int start_index = class_interval_ptr[rank];
  CUDA_KERNEL_LOOP(i, N * D) {
    auto row = i / D;
    auto col = i % D;
    if ((col + start_index) == label[row]) {
      logits_grad[i] = (logits_grad[i] - static_cast<T>(1.0)) * loss_grad[row];
      if (fabs(margin1 - 1.0) > 1e-8 || fabs(margin2) > 1e-8) {
        MPType dout = static_cast<MPType>(logits_grad[i]);
        MPType one = static_cast<MPType>(1.0f);
        MPType x = static_cast<MPType>(logits[i]);
        MPType m1 = static_cast<MPType>(margin1);
        MPType m2 = static_cast<MPType>(margin2);

        MPType d = m1 * sin(m1 * acos(x) + m2) / sqrt(one - x * x);
        logits_grad[i] = static_cast<T>(dout * d);
      }
    } else {
      logits_grad[i] *= loss_grad[row];
    }
    if (fabs(scale - 1.0) > 1e-8) {
      logits_grad[i] *= static_cast<T>(scale);
    }
  }
}

template <typename T, typename Context>
void MarginCrossEntropyGradKernel(const Context& dev_ctx,
                                  const DenseTensor& logits,
                                  const DenseTensor& label,
                                  const DenseTensor& softmax,
                                  const DenseTensor& loss_grad,
                                  bool return_softmax,
                                  int ring_id,
                                  int rank,
                                  int nranks,
                                  float margin1,
                                  float margin2,
                                  float margin3,
                                  float scale,
                                  DenseTensor* logits_grad) {
  const auto softmax_dims = softmax.dims();
  const int axis = softmax_dims.size() - 1;
  const int N = phi::funcs::SizeToAxis(axis, softmax_dims);
  const int D = phi::funcs::SizeFromAxis(axis, softmax_dims);

  if (return_softmax) {
    phi::Copy<Context>(
        dev_ctx, softmax, dev_ctx.GetPlace(), false, logits_grad);
  } else {
    logits_grad->ShareDataWith(softmax);
  }

  int blocks = NumBlocks(N * D);
  int threads = kNumCUDAThreads;
  const auto& label_type =
      paddle::framework::TransToProtoVarType(label.dtype());

  DenseTensor class_interval;
  GetClassInterval<T, Context>(dev_ctx.stream(),
                               dev_ctx.GetPlace(),
                               dev_ctx,
                               ring_id,
                               rank,
                               nranks,
                               D,
                               &class_interval);

  if (label_type == paddle::framework::proto::VarType::INT32) {
    typedef int32_t LabelT;
    CalculateGrad<T, LabelT>
        <<<blocks, threads, 0, dev_ctx.stream()>>>(logits_grad->data<T>(),
                                                   loss_grad.data<T>(),
                                                   logits.data<T>(),
                                                   label.data<LabelT>(),
                                                   margin1,
                                                   margin2,
                                                   scale,
                                                   rank,
                                                   N,
                                                   D,
                                                   class_interval.data<int>());
  } else if (label_type == paddle::framework::proto::VarType::INT64) {
    typedef int64_t LabelT;
    CalculateGrad<T, LabelT>
        <<<blocks, threads, 0, dev_ctx.stream()>>>(logits_grad->data<T>(),
                                                   loss_grad.data<T>(),
                                                   logits.data<T>(),
                                                   label.data<LabelT>(),
                                                   margin1,
                                                   margin2,
                                                   scale,
                                                   rank,
                                                   N,
                                                   D,
                                                   class_interval.data<int>());
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(margin_cross_entropy_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::MarginCrossEntropyGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}