image_classification.html 25.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
9
    <title>Image Classification Tutorial &#8212; PaddlePaddle  documentation</title>
Y
Yu Yang 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    
    <link rel="stylesheet" href="../../_static/classic.css" type="text/css" />
    <link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../../',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../../_static/jquery.js"></script>
    <script type="text/javascript" src="../../_static/underscore.js"></script>
    <script type="text/javascript" src="../../_static/doctools.js"></script>
    <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html" />
    <link rel="up" title="Image Classification Tutorial" href="index.html" />
    <link rel="next" title="Sentiment Analasis Tutorial" href="../sentiment_analysis/index.html" />
    <link rel="prev" title="Image Classification Tutorial" href="index.html" /> 
  </head>
  <body role="document">
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="../sentiment_analysis/index.html" title="Sentiment Analasis Tutorial"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="index.html" title="Image Classification Tutorial"
             accesskey="P">previous</a> |</li>
48 49 50
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../index.html" >Examples and demos</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" accesskey="U">Image Classification Tutorial</a> &#187;</li> 
Y
Yu Yang 已提交
51 52 53 54 55 56 57 58
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
Y
Yu Yang 已提交
59 60
  <div class="section" id="image-classification-tutorial">
<span id="image-classification-tutorial"></span><h1>Image Classification Tutorial<a class="headerlink" href="#image-classification-tutorial" title="Permalink to this headline"></a></h1>
Y
Yu Yang 已提交
61 62 63 64
<p>This tutorial will guide you through training a convolutional neural network to classify objects using the CIFAR-10 image classification dataset.
As shown in the following figure, the convolutional neural network can recognize the main object in images, and output the classification result.</p>
<p><center><img alt="Image Classification" src="../../_images/image_classification.png" /></center></p>
<div class="section" id="data-preparation">
Y
Yu Yang 已提交
65
<span id="data-preparation"></span><h2>Data Preparation<a class="headerlink" href="#data-preparation" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
66 67 68
<p>First, download CIFAR-10 dataset. CIFAR-10 dataset can be downloaded from its official website.</p>
<p><a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a></p>
<p>We have prepared a script to download and process CIFAR-10 dataset. The script will download CIFAR-10 dataset from the official dataset.
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80
It will convert it to jpeg images and organize them into a directory with the required structure for the tutorial. Make sure that you have installed pillow and its dependents.
Consider the following commands:</p>
<ol class="simple">
<li>install pillow dependents</li>
</ol>
<div class="highlight-bash"><div class="highlight"><pre><span></span>sudo apt-get install libjpeg-dev
pip install pillow
</pre></div>
</div>
<ol class="simple">
<li>download data and preparation</li>
</ol>
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> demo/image_classification/data/
sh download_cifar.sh
</pre></div>
</div>
<p>The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.</p>
<p>Here are the classes in the dataset, as well as 10 random images from each:
<center><img alt="Image Classification" src="../../_images/cifar.png" /></center></p>
<p>After downloading and converting, we should find a directory (cifar-out) containing the dataset in the following format:</p>
89
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">train</span>
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
<span class="o">---</span><span class="n">airplane</span>
<span class="o">---</span><span class="n">automobile</span>
<span class="o">---</span><span class="n">bird</span>
<span class="o">---</span><span class="n">cat</span>
<span class="o">---</span><span class="n">deer</span>
<span class="o">---</span><span class="n">dog</span>
<span class="o">---</span><span class="n">frog</span>
<span class="o">---</span><span class="n">horse</span>
<span class="o">---</span><span class="n">ship</span>
<span class="o">---</span><span class="n">truck</span>
<span class="n">test</span>
<span class="o">---</span><span class="n">airplane</span>
<span class="o">---</span><span class="n">automobile</span>
<span class="o">---</span><span class="n">bird</span>
<span class="o">---</span><span class="n">cat</span>
<span class="o">---</span><span class="n">deer</span>
<span class="o">---</span><span class="n">dog</span>
<span class="o">---</span><span class="n">frog</span>
<span class="o">---</span><span class="n">horse</span>
<span class="o">---</span><span class="n">ship</span>
<span class="o">---</span><span class="n">truck</span>
</pre></div>
</div>
<p>It has two directories:<code class="docutils literal"><span class="pre">train</span></code> and <code class="docutils literal"><span class="pre">test</span></code>. These two directories contain training data and testing data of CIFAR-10, respectively. Each of these two folders contains 10 sub-folders, ranging from <code class="docutils literal"><span class="pre">airplane</span></code> to <code class="docutils literal"><span class="pre">truck</span></code>. Each sub-folder contains images with the corresponding label. After the images are organized into this structure, we are ready to train an image classification model.</p>
</div>
<div class="section" id="preprocess">
Y
Yu Yang 已提交
116
<span id="preprocess"></span><h2>Preprocess<a class="headerlink" href="#preprocess" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
117
<p>After the data has been downloaded, it needs to be pre-processed into the Paddle format. We can run the following command for preprocessing.</p>
118 119
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">demo</span><span class="o">/</span><span class="n">image_classification</span><span class="o">/</span>
<span class="n">sh</span> <span class="n">preprocess</span><span class="o">.</span><span class="n">sh</span>
Y
Yu Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">preprocess.sh</span></code> calls <code class="docutils literal"><span class="pre">./demo/image_classification/preprocess.py</span></code> to preprocess image data.</p>
<div class="highlight-sh"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PYTHONPATH</span><span class="o">=</span><span class="nv">$PYTHONPATH</span>:../../
<span class="nv">data_dir</span><span class="o">=</span>./data/cifar-out
python preprocess.py -i <span class="nv">$data_dir</span> -s <span class="m">32</span> -c 1
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">./demo/image_classification/preprocess.py</span></code> has the following arguments</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">-i</span></code> or <code class="docutils literal"><span class="pre">--input</span></code> specifes  the input data directory.</li>
<li><code class="docutils literal"><span class="pre">-s</span></code> or <code class="docutils literal"><span class="pre">--size</span></code> specifies the processed size of images.</li>
<li><code class="docutils literal"><span class="pre">-c</span></code> or <code class="docutils literal"><span class="pre">--color</span></code> specifes whether images are color images or gray images.</li>
</ul>
</div>
<div class="section" id="model-training">
Y
Yu Yang 已提交
136
<span id="model-training"></span><h2>Model Training<a class="headerlink" href="#model-training" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
<p>We need to create a model config file before training the model. An example of the config file (vgg_16_cifar.py) is listed below. <strong>Note</strong>, it is slightly different from the <code class="docutils literal"><span class="pre">vgg_16_cifar.py</span></code> which also applies to the prediction.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="kn">import</span> <span class="o">*</span>
<span class="n">data_dir</span><span class="o">=</span><span class="s1">&#39;data/cifar-out/batches/&#39;</span>
<span class="n">meta_path</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s1">&#39;batches.meta&#39;</span>
<span class="n">args</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;meta&#39;</span><span class="p">:</span><span class="n">meta_path</span><span class="p">,</span> <span class="s1">&#39;mean_img_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span>
        <span class="s1">&#39;img_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span>
        <span class="s1">&#39;use_jpeg&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">&#39;color&#39;</span><span class="p">:</span> <span class="s2">&quot;color&quot;</span><span class="p">}</span>
<span class="n">define_py_data_sources2</span><span class="p">(</span><span class="n">train_list</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s2">&quot;train.list&quot;</span><span class="p">,</span>
                        <span class="n">test_list</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s1">&#39;test.list&#39;</span><span class="p">,</span>
                        <span class="n">module</span><span class="o">=</span><span class="s1">&#39;image_provider&#39;</span><span class="p">,</span>
                        <span class="n">obj</span><span class="o">=</span><span class="s1">&#39;processData&#39;</span><span class="p">,</span>
                        <span class="n">args</span><span class="o">=</span><span class="n">args</span><span class="p">)</span>
<span class="n">settings</span><span class="p">(</span>
    <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span><span class="p">,</span>
    <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.1</span> <span class="o">/</span> <span class="mf">128.0</span><span class="p">,</span>
    <span class="n">learning_method</span> <span class="o">=</span> <span class="n">MomentumOptimizer</span><span class="p">(</span><span class="mf">0.9</span><span class="p">),</span>
    <span class="n">regularization</span> <span class="o">=</span> <span class="n">L2Regularization</span><span class="p">(</span><span class="mf">0.0005</span> <span class="o">*</span> <span class="mi">128</span><span class="p">))</span>

<span class="n">img</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">3</span><span class="o">*</span><span class="mi">32</span><span class="o">*</span><span class="mi">32</span><span class="p">)</span>
<span class="n">lbl</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="c1"># small_vgg is predined in trainer_config_helpers.network</span>
<span class="n">predict</span> <span class="o">=</span> <span class="n">small_vgg</span><span class="p">(</span><span class="n">input_image</span><span class="o">=</span><span class="n">img</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">outputs</span><span class="p">(</span><span class="n">classification_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">))</span>
</pre></div>
</div>
<p>The first line imports python functions for defining networks.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="kn">import</span> <span class="o">*</span>
</pre></div>
</div>
<p>Then define an <code class="docutils literal"><span class="pre">define_py_data_sources2</span></code> which use python data provider
interface. The arguments in <code class="docutils literal"><span class="pre">args</span></code> are used in <code class="docutils literal"><span class="pre">image_provider.py</span></code> which
yeilds image data and transform them to Paddle.</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">meta</span></code>: the mean value of training set.</li>
<li><code class="docutils literal"><span class="pre">mean_img_size</span></code>: the size of mean feature map.</li>
<li><code class="docutils literal"><span class="pre">img_size</span></code>: the height and width of input image.</li>
<li><code class="docutils literal"><span class="pre">num_classes</span></code>: the number of classes.</li>
<li><code class="docutils literal"><span class="pre">use_jpeg</span></code>: the data storage type when preprocessing.</li>
<li><code class="docutils literal"><span class="pre">color</span></code>: specify color image.</li>
</ul>
<p><code class="docutils literal"><span class="pre">settings</span></code> specifies the training algorithm. In the following example,
it specifies learning rate as 0.1, but divided by batch size, and the weight decay
is 0.0005 and multiplied by batch size.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">settings</span><span class="p">(</span>
    <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span><span class="p">,</span>
    <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.1</span> <span class="o">/</span> <span class="mf">128.0</span><span class="p">,</span>
    <span class="n">learning_method</span> <span class="o">=</span> <span class="n">MomentumOptimizer</span><span class="p">(</span><span class="mf">0.9</span><span class="p">),</span>
    <span class="n">regularization</span> <span class="o">=</span> <span class="n">L2Regularization</span><span class="p">(</span><span class="mf">0.0005</span> <span class="o">*</span> <span class="mi">128</span><span class="p">)</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">small_vgg</span></code> specifies the network. We use a small version of VGG convolutional network as our network
for classification. A description of VGG network can be found here <a class="reference external" href="http://www.robots.ox.ac.uk/~vgg/research/very_deep/">http://www.robots.ox.ac.uk/~vgg/research/very_deep/</a>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># small_vgg is predined in trainer_config_helpers.network</span>
<span class="n">predict</span> <span class="o">=</span> <span class="n">small_vgg</span><span class="p">(</span><span class="n">input_image</span><span class="o">=</span><span class="n">img</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<p>After writing the config, we can train the model by running the script train.sh. Notice that the following script assumes the you run the script in the <code class="docutils literal"><span class="pre">./demo/image_classification</span></code> folder. If you run the script in a different folder, you need to change the paths of the scripts and the configuration files accordingly.</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">config</span><span class="o">=</span>vgg_16_cifar.py
<span class="nv">output</span><span class="o">=</span>./cifar_vgg_model
<span class="nv">log</span><span class="o">=</span>train.log

paddle train <span class="se">\</span>
--config<span class="o">=</span><span class="nv">$config</span> <span class="se">\</span>
--dot_period<span class="o">=</span><span class="m">10</span> <span class="se">\</span>
--log_period<span class="o">=</span><span class="m">100</span> <span class="se">\</span>
--test_all_data_in_one_period<span class="o">=</span><span class="m">1</span> <span class="se">\</span>
--use_gpu<span class="o">=</span><span class="m">1</span> <span class="se">\</span>
--save_dir<span class="o">=</span><span class="nv">$output</span> <span class="se">\</span>
2&gt;<span class="p">&amp;</span><span class="m">1</span> <span class="p">|</span> tee <span class="nv">$log</span>

python -m paddle.utils.plotcurve -i <span class="nv">$log</span> &gt; plot.png
</pre></div>
</div>
<ul class="simple">
<li>Here we use GPU mode to train. If you have no gpu environment, just set <code class="docutils literal"><span class="pre">use_gpu=0</span></code>.</li>
<li><code class="docutils literal"><span class="pre">./demo/image_classification/vgg_16_cifar.py</span></code> is the network and data configuration file. The meaning of the other flags can be found in the documentation of the command line flags.</li>
<li>The script <code class="docutils literal"><span class="pre">plotcurve.py</span></code> requires the python module of <code class="docutils literal"><span class="pre">matplotlib</span></code>, so if it fails, maybe you need to install <code class="docutils literal"><span class="pre">matplotlib</span></code>.</li>
</ul>
Y
Yu Yang 已提交
216
<p>After training finishes, the training and testing error curves will be saved to <code class="docutils literal"><span class="pre">plot.png</span></code> using <code class="docutils literal"><span class="pre">plotcurve.py</span></code> script. An example of the plot is shown below:</p>
Y
Yu Yang 已提交
217 218 219
<p><center><img alt="Training and testing curves." src="../../_images/plot.png" /></center></p>
</div>
<div class="section" id="prediction">
Y
Yu Yang 已提交
220
<span id="prediction"></span><h2>Prediction<a class="headerlink" href="#prediction" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
221
<p>After we train the model, the model file as well as the model parameters are stored in path <code class="docutils literal"><span class="pre">./cifar_vgg_model/pass-%05d</span></code>. For example, the model of the 300-th pass is stored at <code class="docutils literal"><span class="pre">./cifar_vgg_model/pass-00299</span></code>.</p>
Y
Yu Yang 已提交
222
<p>To make a prediction for an image, one can run <code class="docutils literal"><span class="pre">predict.sh</span></code> as follows. The script will output the label of the classfiication.</p>
223
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">sh</span> <span class="n">predict</span><span class="o">.</span><span class="n">sh</span>
Y
Yu Yang 已提交
224 225 226
</pre></div>
</div>
<p>predict.sh:</p>
227
<div class="highlight-default"><div class="highlight"><pre><span></span>model=cifar_vgg_model/pass-00299/
Y
Yu Yang 已提交
228 229 230 231 232
image=data/cifar-out/test/airplane/seaplane_s_000978.png
use_gpu=1
python prediction.py $model $image $use_gpu
</pre></div>
</div>
Y
Yu Yang 已提交
233 234
</div>
<div class="section" id="exercise">
Y
Yu Yang 已提交
235
<span id="exercise"></span><h2>Exercise<a class="headerlink" href="#exercise" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
236 237 238 239
<p>Train a image classification of birds using VGG model and CUB-200 dataset. The birds dataset can be downloaded here. It contains an image dataset with photos of 200 bird species (mostly North American).</p>
<p><a class="reference external" href="http://www.vision.caltech.edu/visipedia/CUB-200.html">http://www.vision.caltech.edu/visipedia/CUB-200.html</a></p>
</div>
<div class="section" id="delve-into-details">
Y
Yu Yang 已提交
240
<span id="delve-into-details"></span><h2>Delve into Details<a class="headerlink" href="#delve-into-details" title="Permalink to this headline"></a></h2>
Y
Yu Yang 已提交
241
<div class="section" id="convolutional-neural-network">
Y
Yu Yang 已提交
242
<span id="convolutional-neural-network"></span><h3>Convolutional Neural Network<a class="headerlink" href="#convolutional-neural-network" title="Permalink to this headline"></a></h3>
Y
Yu Yang 已提交
243 244 245 246 247 248 249 250 251 252 253
<p>A Convolutional Neural Network is a feedforward neural network that uses convolution layers. It is very suitable for building neural networks that process and understand images. A standard convolutional neural network is shown below:</p>
<p><img alt="Convolutional Neural Network" src="../../_images/lenet.png" /></p>
<p>Convolutional Neural Network contains the following layers:</p>
<ul class="simple">
<li>Convolutional layer: It uses convolution operation to extract features from an image or a feature map.</li>
<li>Pooling layer: It uses max-pooling to downsample feature maps.</li>
<li>Fully Connected layer: It uses fully connected connections to transform features.</li>
</ul>
<p>Convolutional Neural Network achieves amazing performance for image classification because it exploits two important characteristics of images: <em>local correlation</em> and <em>spatial invariance</em>. By iteratively applying convolution and max-pooing operations, convolutional neural network can well represent these two characteristics of images.</p>
<p>For more details of how to define layers and their connections, please refer to the documentation of layers.</p>
</div>
Y
Yu Yang 已提交
254
</div>
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h3><a href="../../index.html">Table Of Contents</a></h3>
  <ul>
Y
Yu Yang 已提交
265 266
<li><a class="reference internal" href="#">Image Classification Tutorial</a><ul>
<li><a class="reference internal" href="#data-preparation">Data Preparation</a></li>
Y
Yu Yang 已提交
267 268 269 270 271 272 273 274
<li><a class="reference internal" href="#preprocess">Preprocess</a></li>
<li><a class="reference internal" href="#model-training">Model Training</a></li>
<li><a class="reference internal" href="#prediction">Prediction</a></li>
<li><a class="reference internal" href="#exercise">Exercise</a></li>
<li><a class="reference internal" href="#delve-into-details">Delve into Details</a><ul>
<li><a class="reference internal" href="#convolutional-neural-network">Convolutional Neural Network</a></li>
</ul>
</li>
Y
Yu Yang 已提交
275 276
</ul>
</li>
Y
Yu Yang 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="index.html"
                        title="previous chapter">Image Classification Tutorial</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="../sentiment_analysis/index.html"
                        title="next chapter">Sentiment Analasis Tutorial</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../../_sources/demo/image_classification/image_classification.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="../../search.html" method="get">
295 296
      <div><input type="text" name="q" /></div>
      <div><input type="submit" value="Go" /></div>
Y
Yu Yang 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="../../py-modindex.html" title="Python Module Index"
             >modules</a> |</li>
        <li class="right" >
          <a href="../sentiment_analysis/index.html" title="Sentiment Analasis Tutorial"
             >next</a> |</li>
        <li class="right" >
          <a href="index.html" title="Image Classification Tutorial"
             >previous</a> |</li>
321 322 323
        <li class="nav-item nav-item-0"><a href="../../index.html">PaddlePaddle  documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="../index.html" >Examples and demos</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="index.html" >Image Classification Tutorial</a> &#187;</li> 
Y
Yu Yang 已提交
324 325 326
      </ul>
    </div>
    <div class="footer" role="contentinfo">
327 328
        &#169; Copyright 2016, PaddlePaddle developers.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.4.6.
Y
Yu Yang 已提交
329 330 331
    </div>
  </body>
</html>