sequence_pool_op.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/operators/sequence_pool_op.h"
16 17 18 19

namespace paddle {
namespace operators {

20
class SequencePoolOp : public framework::OperatorWithKernel {
21 22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInput("X"),
27
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
29
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
30
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
31 32 33
  }
};

34
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
35
 public:
36 37
  SequencePoolOpMaker(framework::OpProto* proto,
                      framework::OpAttrChecker* op_checker)
38
      : OpProtoAndCheckerMaker(proto, op_checker) {
L
Luo Tao 已提交
39
    AddInput("X", "(LoDTensor), the variable-length input of SequencePoolOp");
L
Luo Tao 已提交
40
    AddOutput("Out",
L
Luo Tao 已提交
41 42
              "(Tensor), output of SequencePoolOp, which does not contain LoD "
              "infomation.");
43 44 45 46 47
    AddAttr<int>(
        "strategy",
        "(int, default AVERAGE) the pooling strategy of SequencePoolOp.")
        .SetDefault(AVERAGE)
        .InEnum({AVERAGE, SUM, SQRT, MAX, LAST, FIRST});
48
    AddComment(R"DOC(
49 50
    SequencePoolOp pools features of all time-steps of each instance.

L
Luo Tao 已提交
51
    For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
52

L
Luo Tao 已提交
53
    Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Q
Qiao Longfei 已提交
54
    Besides, for the sake of simplicity, we assume M=1 and N=1,
L
Luo Tao 已提交
55 56
    and the value of X = [[1, 3], [2, 4, 6], [5, 1]].

L
Luo Tao 已提交
57
    Thus, Out is a [3,1,1] Tensor without LoD infomation.
Q
Qiao Longfei 已提交
58
    And for different strategy, the value of Out is as follows:
L
Luo Tao 已提交
59 60 61

    - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
    - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
Q
Qiao Longfei 已提交
62
    - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
63 64 65 66
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
    - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
    - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
    - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
67 68 69 70
    )DOC");
  }
};

71
class SequencePoolGradOp : public framework::OperatorWithKernel {
72 73 74 75
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
76
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
77 78 79 80 81
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
82 83
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
84
    for (int64_t i = 1; i < og_dims.size(); ++i) {
85 86
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
Q
Qiao Longfei 已提交
87
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
88 89 90 91 92 93 94
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
95 96
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
            sequence_pool_grad, ops::SequencePoolGradOp);
97
REGISTER_OP_CPU_KERNEL(
98
    sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
99
REGISTER_OP_CPU_KERNEL(
100 101
    sequence_pool_grad,
    ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);