momentum_op.cu 3.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
S
sidgoyal78 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
S
sidgoyal78 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
S
sidgoyal78 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/momentum_op.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

template <typename T>
__global__ void MomentumKernel(const T* p, const T* g, const T* v,
                               const T* learning_rate, const T mu,
                               const int64_t num, bool use_nesterov, T* p_out,
                               T* v_out) {
  T lr = learning_rate[0];
  if (use_nesterov) {
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
         i += blockDim.x * gridDim.x) {
      T g_val = g[i];
      T v_new = v[i] * mu + g_val;
      v_out[i] = v_new;
33
      p_out[i] = p[i] - (g_val + v_new * mu) * lr;
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    }
  } else {
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num;
         i += blockDim.x * gridDim.x) {
      T v_new = v[i] * mu + g[i];
      v_out[i] = v_new;
      p_out[i] = p[i] - lr * v_new;
    }
  }
}

template <typename T>
class MomentumOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
49 50 51 52 53 54 55 56 57 58 59
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());
    const auto* grad_var = ctx.InputVar("Grad");
    PADDLE_ENFORCE(grad_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Grad").front(), grad_var->Type().name());

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto velocity = ctx.Input<framework::Tensor>("Velocity");
    auto grad = ctx.Input<framework::Tensor>("Grad");
    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");

    T* p_out = param_out->mutable_data<T>(ctx.GetPlace());
    T* v_out = velocity_out->mutable_data<T>(ctx.GetPlace());

    T mu = static_cast<T>(ctx.Attr<float>("mu"));
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");

    auto* p = param->data<T>();
    auto* v = velocity->data<T>();
    auto* g = grad->data<T>();
    auto* lr = learning_rate->data<T>();

    int block = 512;
    int grid = (param->numel() + block - 1) / block;
    MomentumKernel<T><<<grid, block, 0, ctx.cuda_device_context().stream()>>>(
        p, g, v, lr, mu, param->numel(), use_nesterov, p_out, v_out);
  }
};

}  // namespace operators
}  // namespace paddle
S
sidgoyal78 已提交
87 88

namespace ops = paddle::operators;
Q
QI JUN 已提交
89 90
REGISTER_OP_CUDA_KERNEL(momentum, ops::MomentumOpCUDAKernel<float>,
                        ops::MomentumOpCUDAKernel<double>);