engine.py 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import time
16 17 18 19 20
import copy
import logging
from collections import defaultdict

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.passes import new_pass, PassContext
38

39
from .hepler import ProgramHelper
40 41
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
49
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52 53


class Engine:
54

55 56 57 58 59
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
60 61
                 strategy=None,
                 user_tuning_config=None):
62
        self.model = model
63 64
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
65
        self.cluster = cluster
66 67
        if self.cluster is None:
            self.cluster = get_default_cluster()
68
        self.strategy = strategy
69 70
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
71
        self._user_tuning_config = user_tuning_config
72

73
        self._executor = None
74 75 76
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
77 78 79 80 81 82 83 84 85 86 87 88

        # TODO: add logger module
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)
89

90 91
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
92
        self._orig_dist_context = get_default_distributed_context()
93
        self._dist_contexts = {}
94 95
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
96 97 98 99
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
100
        self._planners = {}
101 102 103 104 105
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
106
        self._dygraph_mode = False
107 108 109 110

    def prepare(self,
                optimizer=None,
                loss=None,
111
                gradient_scale=True,
112 113
                metrics=None,
                all_ranks=False):
114 115 116
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
117 118 119 120
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
121
        self._optimizer = optimizer
122
        self._all_ranks = all_ranks
123 124 125 126 127 128

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
129
        self._loss = loss
130 131 132 133 134 135

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
136
        self._metrics = to_list(metrics)
137
        self._gradient_scale = gradient_scale
138
        self._planned_mode = None
139
        self._prepare_single_mode("train")
140

141
    def _prepare_single_mode(self, mode):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

        self._build(mode)
        # Do the planning process
        self._plan(mode)

        # Do the Optimization tuning
        if self._user_tuning_config and mode == "train":
            self._optimization_tuning(mode)

        # Do the parallel process
        self._parallel(mode, self._all_ranks)

        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
157

158
    def _build(self, mode):
159
        if _non_static_mode() or self._dygraph_mode:
160
            paddle.disable_static()
161 162 163
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

164 165 166
            program_helper = ProgramHelper(self.model, self._loss,
                                           self._metrics, self.inputs_spec,
                                           self.labels_spec)
167
            # build forward main program
168
            program_helper.build_program(mode)
169

170 171 172
            self.concrete_program = program_helper.concrete_program
            serial_main_prog = program_helper.main_program
            serial_startup_prog = program_helper.startup_program
173

174 175 176 177 178
            inputs = program_helper.input_vars
            outputs = program_helper.output_vars
            labels = program_helper.label_vars
            losses = program_helper.loss_vars
            metrics = program_helper.metric_vars
179

180
            paddle.enable_static()
181 182 183 184 185 186 187 188 189 190
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
191
            # FIXME to support grad clip
192 193 194
            # with static.program_guard(serial_main_prog, serial_startup_prog), \
            #     utils.unique_name.guard():
            with static.program_guard(serial_main_prog, serial_startup_prog):
195 196 197 198 199 200 201 202 203 204 205 206
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

223
        self._set_recompute_ckpts()
224 225 226 227
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
228
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
229

230 231 232 233 234 235 236
    def _optimization_tuning(self, mode):

        self.mode = mode
        assert "batch_size" in self._user_tuning_config, "Optimization Tuning should provide with batch size."
        assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
        batch_size = self._user_tuning_config["batch_size"]
        dataset = self._user_tuning_config["dataset"]
237 238
        dataset.dp_world_size = self._input_split_size
        dataset.dp_rank = self._input_split_rank
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        from .tuner.optimization_tuner import OptimizationTuner
        self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

        if self._user_tuning_config["run_after_tuning"]:
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()
        else:
            return

258 259 260 261 262 263
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

264 265
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
266

267 268 269 270 271 272 273 274 275
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

276
        self._input_split_size, self._input_split_rank = self._get_input_split_info(
277 278
            feed_list[0], self._dist_contexts[mode])

279
    def _parallel(self, mode, all_ranks):
280 281 282
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
283
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
284 285 286 287 288
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
289 290

    def _init_dist_context(self, mode):
291
        # Init dist_context['mode'] with the first planned dist_context
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
309
        # Get the current content from the distributed context
310 311 312 313
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
314 315 316 317
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
318 319
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
320
        self._lr_optimizer = self._dist_contexts[mode]._lr_optimizer
321

322 323 324 325
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
326

327
            # NOTE: add the comm init control in the future for auto search
328 329 330 331
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
332 333 334 335

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

365 366
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
367 368 369 370 371 372 373 374 375 376
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
            if self.strategy.amp and self.strategy.amp_configs['use_pure_fp16']:
                # from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
                def cast_parameters_to_fp16(place,
                                            program,
                                            scope=None,
                                            to_fp16_var_names=None):
                    """
                    Traverse all parameters in the whole model and set them to the FP16 data type.
                    Whereas, this function will keep parameters of batchnorms in FP32.
                    Args:
                        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
                        program (Program): The used program.
                        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                                    Default is None.
                        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                                            will be set to FP16. Usually, it is the returned
                                                            value of `cast_model_to_fp16` API.
                    """
                    from paddle.framework import core
                    import numpy as np
                    all_parameters = []
                    for block in program.blocks:
                        all_parameters.extend(block.all_parameters())

                    var_scope = scope if scope else paddle.static.global_scope()
                    for param in all_parameters:
                        if param.dtype == core.VarDesc.VarType.FP16:
                            param_t = var_scope.find_var(
                                param.name).get_tensor()
                            data = np.array(param_t)
                            param_t.set(np.float16(data), place)

                cast_parameters_to_fp16(self._place, prune_startup_prog)

412 413 414 415
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
416
            fetches=None,
417
            steps_per_epoch=None,
418 419
            collate_fn=None,
            use_cache=False,
420
            return_numpy=True):
421 422
        # TODO: callbacks
        # TODO: evaluate after training
423 424 425 426 427 428

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

429
        self.mode = 'train'
430
        assert self.mode in self._dist_main_progs, \
431
            "train model is not ready, please call `engine.prepare()` first."
432
        train_dataloader = self._create_dataloader(train_data, batch_size,
433 434
                                                   epochs, steps_per_epoch,
                                                   collate_fn)
435

436 437
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
438
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)
439 440
        lr_scheduler = self.get_lr_scheduler(self.main_program)

441
        for epoch in range(epochs):
442
            train_logs = {"epoch: {:d} ": epoch}
443
            for step, _ in enumerate(train_dataloader):
444

445 446
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
447
                                          use_program_cache=use_cache,
448
                                          return_numpy=return_numpy)
449
                train_logs["step: {:d} "] = step
450 451
                if lr_scheduler is not None:
                    lr_scheduler.step()
452
                    train_logs["lr: {:5e} "] = self._lr_optimizer.get_lr()
453 454
                # inner fetches
                if fetch_loss:
455
                    train_logs["loss: {:9f} "] = outs[0][0]
456 457 458 459
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
460 461 462 463
                    train_logs[fetch_map[user_fetch_list[i]] + ": {}"] = out
                # logger
                string = '[train] ' + ''.join(list(train_logs.keys()))
                self._logger.info(string.format(*list(train_logs.values())))
464

465 466 467
    def evaluate(self,
                 eval_data,
                 batch_size=1,
468
                 fetches=None,
469 470
                 collate_fn=None,
                 use_cache=False,
471
                 return_numpy=True):
472
        self.mode = 'eval'
473 474 475
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

476
        assert self.mode in self._dist_main_progs, \
477
            "eval model is not ready, please call `engine.prepare()` first."
478 479 480
        eval_dataloader = self._create_dataloader(eval_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
481

482 483 484
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
485 486 487 488
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
489
            eval_logs = {"step: {:d} ": step}
490 491
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
492
                                      use_program_cache=use_cache,
493 494 495
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
496
                eval_logs["loss: {:9f} "] = outs[0][0]
497 498 499 500 501 502 503
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
504
                        eval_logs[metric.name()[i] + ": {:9f} "] = res
505
            # usr fetches
506
            usr_outs = outs[len(inner_fetch):]
507
            usr_fetch_list = fetch_list[len(inner_fetch):]
508
            for i, out in enumerate(usr_outs):
509
                eval_logs[fetch_map[usr_fetch_list[i]] + ": {}"] = out
510
            # logger
511 512
            string = '[eval] ' + ''.join(list(eval_logs.keys()))
            self._logger.info(string.format(*list(eval_logs.values())))
513

514 515 516
    def predict(self,
                test_data,
                batch_size=1,
517
                fetches=None,
518 519
                collate_fn=None,
                use_cache=False,
520
                return_numpy=True):
521
        self.mode = 'predict'
522 523 524
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

525
        assert self.mode in self._dist_main_progs, \
526
            "predict model is not ready, please call `engine.prepare()` first."
527 528 529
        test_dataloader = self._create_dataloader(test_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
530

531 532
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
533
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
534 535

        outputs = []
536
        for step, _ in enumerate(test_dataloader):
537
            predict_logs = {"step: {:d} ": step}
538 539
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
540
                                      use_program_cache=use_cache,
541 542 543
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
544 545 546 547
                predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out
            # logger
            string = '[pred] ' + ''.join(list(predict_logs.keys()))
            self._logger.info(string.format(*list(predict_logs.values())))
548

549
        return outputs
550

551 552 553 554
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
555 556
                           steps_per_epoch=None,
                           collate_fn=None):
557 558 559 560
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
561

562
        # NOTE: Get feed_list from dist_program, then insert dataloader op
563 564
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
565 566 567 568 569 570 571 572
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])

        # remove the first three ops if multi run fit/evaluate/predict
573
        op_size = len(dist_main_block.ops)
574 575 576 577
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
578 579

        # insert read op at the end of program
580
        places = paddle.static.cuda_places()
581
        with static.program_guard(dist_main_prog, dist_startup_prog):
582
            dataloader = NonIterableGeneratorLoader(
583 584 585 586 587 588
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
589
                collate_fn,
590 591
                data_parallel_world_size=self._input_split_size,
                data_parallel_rank=self._input_split_rank)
592 593

        # move read op from the end of program to the start of program
594
        new_op_size = len(dist_main_block.ops)
595
        for _ in range(new_op_size - 1, op_size - 1, -1):
596 597 598
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
599 600 601
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
602 603 604 605 606 607 608 609
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

610 611 612 613 614 615 616 617 618 619 620
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
636
        else:
637 638 639 640 641 642 643 644 645 646 647 648 649
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
650

651 652
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

674 675 676 677 678 679 680 681 682
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

        config = self.strategy.recompute_configs

        # extract ckpts by specific model
        if isinstance(self.model, paddle.nn.Layer):
            if hasattr(
683 684 685
                    self.model, "gpt"
            ) and self.model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self.model.gpt.checkpoints
686 687 688 689 690 691 692 693
        else:
            exact_ckpts = config["checkpoints"]

        # modify strategy
        if self.strategy.recompute:
            config["checkpoints"] = exact_ckpts[:]
            self.strategy.recompute_configs = config
            logs = {
694
                'Model Class': self.model.__class__.__name__,
695 696 697 698
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

699 700 701 702 703
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
704 705
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
706 707 708
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
709 710 711 712
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
713 714 715 716 717
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
718 719 720 721 722
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
723

724 725 726 727
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
728

729 730 731 732
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
733

734 735 736 737 738 739 740 741 742
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
770 771 772 773

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]