pool3d_op_plugin.h 8.6 KB
Newer Older
F
feng_shuai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <stdio.h>
#include <cassert>
#include <string>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

static std::vector<int> CalcOutputSize(const std::vector<int>& input_shape,
                                       const bool& ceil_mode,
                                       const bool& adaptive,
                                       const std::vector<int>& ksize,
                                       const std::vector<int>& strides,
                                       const std::vector<int>& paddings) {
  std::vector<int> output_shape = input_shape;
  if (adaptive) {
    output_shape[0] = ksize[0];
    output_shape[1] = ksize[1];
    output_shape[2] = ksize[2];
  } else {
    int output_d =
        (input_shape[0] - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
    int output_h =
        (input_shape[1] - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
    int output_w =
        (input_shape[2] - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
    if (ceil_mode) {
      output_d =
          (input_shape[0] - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
              strides[0] +
          1;
      output_h =
          (input_shape[1] - ksize[1] + 2 * paddings[1] + strides[1] - 1) /
              strides[1] +
          1;
      output_w =
          (input_shape[2] - ksize[2] + 2 * paddings[2] + strides[2] - 1) /
              strides[2] +
          1;
    }
    output_shape[0] = output_d;
    output_shape[1] = output_h;
    output_shape[2] = output_w;
  }
  return output_shape;
}

class Pool3DPlugin : public PluginTensorRTV2Ext {
 public:
  size_t getSerializationSize() const TRT_NOEXCEPT override;
  // TRT will call this func when we need to serialize the configuration of
  // tensorrt.
  void serialize(void* buffer) const TRT_NOEXCEPT override;

  enum class Pool3DType {
    max = 0,
    avg,
  };
  Pool3DPlugin() {}
  Pool3DPlugin(bool ceil_mode, Pool3DType pool3d_type, bool adaptive,
               std::vector<int> ksize, std::vector<int> strides,
               std::vector<int> paddings, std::vector<int> input_shape)
      : ceil_mode_(ceil_mode),
        pool3d_type_(pool3d_type),
        adaptive_(adaptive),
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        input_shape_(input_shape) {
    output_shape_ = input_shape_;
    std::vector<int> output_shape =
        CalcOutputSize({input_shape_[1], input_shape_[2], input_shape_[3]},
                       ceil_mode_, adaptive_, ksize_, strides_, paddings_);
    output_shape_[1] = output_shape[0];
    output_shape_[2] = output_shape[1];
    output_shape_[3] = output_shape[2];
  }

  // It was used for tensorrt deserialization.
  // It should not be called by users.
  Pool3DPlugin(void const* serialData, size_t serialLength) {
    deserializeBase(serialData, serialLength);
    DeserializeValue(&serialData, &serialLength, &ceil_mode_);
    DeserializeValue(&serialData, &serialLength, &pool3d_type_);
    DeserializeValue(&serialData, &serialLength, &adaptive_);
    DeserializeValue(&serialData, &serialLength, &ksize_);
    DeserializeValue(&serialData, &serialLength, &strides_);
    DeserializeValue(&serialData, &serialLength, &paddings_);
    DeserializeValue(&serialData, &serialLength, &input_shape_);
    DeserializeValue(&serialData, &serialLength, &output_shape_);
  }

  Pool3DPlugin* clone() const TRT_NOEXCEPT override;

  const char* getPluginType() const TRT_NOEXCEPT override;

  nvinfer1::DataType getOutputDataType(
      int index, const nvinfer1::DataType* input_types,
      int nb_inputs) const TRT_NOEXCEPT override;

  int getNbOutputs() const TRT_NOEXCEPT override;

  nvinfer1::Dims getOutputDimensions(int index, const nvinfer1::Dims* inputs,
                                     int nbInputDims) TRT_NOEXCEPT override;

  int initialize() TRT_NOEXCEPT override;

  void destroy() TRT_NOEXCEPT override;

#if IS_TRT_VERSION_LT(8000)
  int enqueue(int batchSize, const void* const* inputs, void** outputs,
#else
  int enqueue(int batchSize, const void* const* inputs, void* const* outputs,
#endif
              void* workspace, cudaStream_t stream) TRT_NOEXCEPT override;

 private:
  bool ceil_mode_;
  Pool3DType pool3d_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  std::vector<int> input_shape_;
  std::vector<int> output_shape_;
};

class Pool3DPluginCreator : public TensorRTPluginCreator {
 public:
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "pool3d_plugin";
  }

  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
    return new Pool3DPlugin(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(Pool3DPluginCreator);

class Pool3DPluginDynamic : public DynamicPluginTensorRT {
 public:
  Pool3DPluginDynamic() {}
  Pool3DPluginDynamic(const bool& ceil_mode, const std::string& pool3d_type,
                      const bool& adaptive, const std::vector<int>& ksize,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings, const bool& is_global)
      : ceil_mode_(ceil_mode),
        pool3d_type_(pool3d_type),
        adaptive_(adaptive),
        ksize_(ksize),
        strides_(strides),
        paddings_(paddings),
        is_global_(is_global) {}

  Pool3DPluginDynamic(void const* serialData, size_t serialLength);
  ~Pool3DPluginDynamic() {}
  nvinfer1::IPluginV2DynamicExt* clone() const TRT_NOEXCEPT override;
  const char* getPluginType() const TRT_NOEXCEPT override;
  int getNbOutputs() const TRT_NOEXCEPT override;
  int initialize() TRT_NOEXCEPT override;
  size_t getSerializationSize() const TRT_NOEXCEPT override;
  void serialize(void* buffer) const TRT_NOEXCEPT override;

  nvinfer1::DimsExprs getOutputDimensions(
      int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
      nvinfer1::IExprBuilder& expr_builder) TRT_NOEXCEPT override;

  bool supportsFormatCombination(int pos,
                                 const nvinfer1::PluginTensorDesc* inOut,
                                 int nbInputs,
                                 int nbOutputs) TRT_NOEXCEPT override;

  void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in,
                       int nbInputs,
                       const nvinfer1::DynamicPluginTensorDesc* out,
                       int nbOutputs) TRT_NOEXCEPT override;

  size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs,
                          int nbInputs,
                          const nvinfer1::PluginTensorDesc* outputs,
                          int nbOutputs) const TRT_NOEXCEPT override;

  int enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
              const nvinfer1::PluginTensorDesc* outputDesc,
              const void* const* inputs, void* const* outputs, void* workspace,
              cudaStream_t stream) TRT_NOEXCEPT override;
  nvinfer1::DataType getOutputDataType(
      int index, const nvinfer1::DataType* inputTypes,
      int nbInputs) const TRT_NOEXCEPT override;

  void destroy() TRT_NOEXCEPT override { delete this; }

 private:
  bool ceil_mode_;
  std::string pool3d_type_;
  bool adaptive_;
  std::vector<int> ksize_;
  std::vector<int> strides_;
  std::vector<int> paddings_;
  bool is_global_;
};

class Pool3DPluginDynamicCreator : public TensorRTPluginCreator {
 public:
  const char* getPluginName() const TRT_NOEXCEPT override {
    return "pool3d_plugin_dynamic";
  }

  const char* getPluginVersion() const TRT_NOEXCEPT override { return "1"; }

  nvinfer1::IPluginV2* deserializePlugin(
      const char* name, const void* serial_data,
      size_t serial_length) TRT_NOEXCEPT override {
    return new Pool3DPluginDynamic(serial_data, serial_length);
  }
};
REGISTER_TRT_PLUGIN_V2(Pool3DPluginDynamicCreator);

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle