MixedLayer.cpp 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MixedLayer.h"
Y
Yu Yang 已提交
16
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {

REGISTER_LAYER(mixed, MixedLayer);

bool MixedLayer::init(const LayerMap& layerMap,
                      const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  if (!Layer::init(layerMap, parameterMap)) return false;

  CHECK_EQ(inputLayers_.size(), parameters_.size());
  projections_.resize(inputLayers_.size());
  for (size_t i = 0; i < inputLayers_.size(); i++) {
    if (config_.inputs(i).has_proj_conf()) {
31 32
      projections_[i].reset(Projection::create(
          config_.inputs(i).proj_conf(), parameters_[i], useGpu_));
Z
zhangjinchao01 已提交
33 34 35 36 37 38 39 40 41 42
    } else {
      CHECK(!parameters_[i]) << "should no parameters for operators";
    }
  }
  for (auto& operator_conf : config_.operator_confs()) {
    for (auto& input_index : operator_conf.input_indices()) {
      CHECK(!config_.inputs(input_index).has_proj_conf());
    }
    operators_.emplace_back(Operator::create(operator_conf, useGpu_));
  }
43

Z
zhangjinchao01 已提交
44 45
  /* initialize biases_ */
  if (biasParameter_.get() != NULL) {
46 47
    sharedBias_ = config_.shared_biases();
    size_t psize = config_.bias_size();
48
    biases_ = std::unique_ptr<Weight>(new Weight(1, psize, biasParameter_));
Z
zhangjinchao01 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  }

  return true;
}

void MixedLayer::prefetch() {
  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (projections_[i]) {
      projections_[i]->prefetch(&getInput(i));
    }
  }
}

void MixedLayer::resetState() {
  for (auto& proj : projections_) {
    if (proj) {
      proj->resetState();
    }
  }
}

void MixedLayer::setState(LayerStatePtr state) {
  CHECK(projectionStateMatrixSize_.size() == projections_.size())
      << "projection size mis-match";

  int start = 0;
  LayerStatePtr statePtr = std::make_shared<LayerState>();
  for (int i = 0; i < (int)projectionStateMatrixSize_.size(); i++) {
    if (projectionStateMatrixSize_[i] > 0) {
      statePtr->value.clear();
      for (int j = start; j < start + projectionStateMatrixSize_[i]; j++) {
        statePtr->value.push_back(state->value[j]);
      }
      projections_[i]->setState(statePtr);
      start += projectionStateMatrixSize_[i];
    }
  }
  CHECK((int)state->value.size() == start) << "state matrix size mis-match";
}

// Return state which consists of all projections states
LayerStatePtr MixedLayer::getState() {
  bool init = projectionStateMatrixSize_.size() == 0;
  LayerStatePtr res = std::make_shared<LayerState>();
  for (int i = 0; i < (int)projections_.size(); i++) {
    LayerStatePtr statePtr =
        projections_[i] ? projections_[i]->getState() : nullptr;
    int stateSize = statePtr == nullptr ? 0 : statePtr->value.size();
    if (init) {
      projectionStateMatrixSize_.push_back(stateSize);
    } else {
      CHECK(projectionStateMatrixSize_[i] == stateSize)
          << "state matrix size mis-match";
    }
    if (statePtr != nullptr) {
      for (auto& matrixPtr : statePtr->value) {
        res->value.push_back(matrixPtr);
      }
    }
  }
  return res;
}

void MixedLayer::forward(PassType passType) {
  Layer::forward(passType);

  int batchSize = getInput(0).getBatchSize();
  int size = getSize();
  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    resetOutput(batchSize, size);
  }

  MatrixPtr outV = getOutputValue();

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (projections_[i]) {
      projections_[i]->forward(&getInput(i), &output_, passType);
    }
  }

  std::vector<const Argument*> ins;
  for (auto& op : operators_) {
    ins.clear();
    for (auto& input_index : op->getConfig().input_indices()) {
      ins.push_back(&getInput(input_index));
    }
    op->forward(ins, &output_, passType);
  }

139 140 141 142 143 144
  /* add the bias-vector */
  if (biases_.get() != NULL) {
    REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
    outV->addBias(*(biases_->getW()), 1, sharedBias_);
  }

Z
zhangjinchao01 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
  /* activation */ {
    REGISTER_TIMER_INFO("FwAtvTimer", getName().c_str());
    forwardActivation();
  }
}

void MixedLayer::backward(const UpdateCallback& callback) {
  /* Do activation */ {
    REGISTER_TIMER_INFO("BpAvtTimer", getName().c_str());
    backwardActivation();
  }

  if (biases_ && biases_->getWGrad()) {
    REGISTER_TIMER_INFO("BpBiasTimer", getName().c_str());
159
    biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBias_);
Z
zhangjinchao01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    /* Increasing the number of gradient */
    biases_->getParameterPtr()->incUpdate(callback);
  }

  for (size_t i = 0; i != inputLayers_.size(); ++i) {
    if (projections_[i]) {
      projections_[i]->backward(callback);
    }
  }

  for (auto& op : operators_) {
    op->backward();
  }
}

}  // namespace paddle