sample_trainer_config_parallel.conf 3.2 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.

TrainData(
    SimpleData(
        files = "trainer/tests/sample_filelist.txt",
        feat_dim = 3,
        context_len = 0,
        buffer_capacity = 1000000,
    )
)

TestData(
    SimpleData(
        files = "trainer/tests/sample_filelist.txt",
        feat_dim = 3,
        context_len = 0,
        buffer_capacity = 1000000,
    )
)

Settings(
    algorithm = "sgd",
    num_batches_per_send_parameter = 1,
    num_batches_per_get_parameter = 1,
    batch_size = 100,
    learning_rate = 0.001,
    learning_rate_decay_a = 1e-5,
    learning_rate_decay_b = 0.5,
)

default_initial_std(0.2)
# Output layer, label layer, cost layer, preferably set to the same environment.
output_device = 0

model_type("nn")

# Input Layer does not need to specify the device number.
Layer(
    name = "input",
    type = "data",
    size = 3,
)

# Calculate in the CPU.
Layer(
    name = "layer1_1",
    type = "fc",
    size = 5,
    active_type = "sigmoid",
    device = -1,
    inputs = "input",
)

# Calculate in the GPU 0.
Layer(
    name = "layer2_1",
    type = "fc",
    size = 10,
    active_type = "sigmoid",
    device = 0,
    inputs = "layer1_1",
)

# Calculate in the GPU 1.
Layer(
    name = "layer2_2",
    type = "fc",
    size = 10,
    active_type = "sigmoid",
    device = 1,
    inputs = "layer1_1",
)

# Calculate in the GPU 0.
Layer(
    name = "layer3_1",
    type = "fc",
    size = 10,
    device = 0,
    active_type = "sigmoid",
    inputs = ["layer2_1", "layer2_2"],
)

# Calculate in the GPU 1.
Layer(
    name = "layer3_2",
    type = "fc",
    size = 10,
    device = 1,
    active_type = "sigmoid",
    inputs = ["layer2_1", "layer2_2"],
)


Layer(
    name = "output",
    type = "fc",
    size = 10,
    device = output_device,
    active_type = "sigmoid",
    inputs = ["layer3_1", "layer3_2"],
)

if get_config_arg('with_cost', bool, True):
    # This is for training the neural network.
    # We need to have another data layer for label
    # and a layer for calculating cost
    Layer(
        name = "label",
        type = "data",
        device = output_device,
        size = 1,
    )

    Layer(
        name = "cost",
        type = "multi-class-cross-entropy",
        device = output_device,
        inputs = ["output", "label"],
    )

    Evaluator(
        name = "error",
        type = "classification_error",
        inputs = ["output", "label"])

    Inputs("input", "label")
    Outputs("cost")

else:
    # This is for prediction where we don't have label
    # and don't need to calculate cost
    Inputs("input")
    Outputs("output")