pad3d_kernel.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/pad3d_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void Pad3dKernel(const Context& dev_ctx,
                 const DenseTensor& x,
                 const IntArray& paddings,
                 const std::string& mode,
                 float pad_value,
                 const std::string& data_format,
                 DenseTensor* out) {
  T value = static_cast<T>(pad_value);
  std::vector<int64_t> pads = paddings.GetData();

  auto in_dims = x.dims();
  const T* in_data = x.data<T>();

  bool is_ncdhw = true;
  if (data_format == "NCDHW") {
    out->Resize({in_dims[0],
                 in_dims[1],
                 in_dims[2] + pads[4] + pads[5],
                 in_dims[3] + pads[2] + pads[3],
                 in_dims[4] + pads[0] + pads[1]});
  } else {
    is_ncdhw = false;
    out->Resize({in_dims[0],
                 in_dims[1] + pads[4] + pads[5],
                 in_dims[2] + pads[2] + pads[3],
                 in_dims[3] + pads[0] + pads[1],
                 in_dims[4]});
  }

  T* out_data = dev_ctx.template Alloc<T>(out);

  const int num = in_dims[0];  // n
  int channels = in_dims[1];   // c
  int in_depth = in_dims[2];   // xd
  int in_height = in_dims[3];  // xh
  int in_width = in_dims[4];   // xw
  if (data_format == "NDHWC") {
    channels = in_dims[4];
    in_depth = in_dims[1];
    in_height = in_dims[2];
    in_width = in_dims[3];
  }

  if (mode == "circular") {
    PADDLE_THROW(phi::errors::External(
        "XPU is not support circular padding mode in pad3d"));
  }

  if (mode == "reflect") {
    PADDLE_ENFORCE_GT(
        in_depth,
        pads[4],
        errors::InvalidArgument("The depth of Input(X)'s dimension should be "
                                "greater than pad_front"
                                " in reflect mode"
                                ", but received depth(%d) and pad_front(%d).",
                                in_depth,
                                pads[4]));
    PADDLE_ENFORCE_GT(
        in_depth,
        pads[5],
        errors::InvalidArgument("The depth of Input(X)'s dimension should be "
                                "greater than pad_back"
                                " in reflect mode"
                                ", but received depth(%d) and pad_back(%d).",
                                in_depth,
                                pads[5]));

    PADDLE_ENFORCE_GT(
        in_height,
        pads[2],
        errors::InvalidArgument("The height of Input(X)'s dimension should be "
                                "greater than pad_top"
                                " in reflect mode"
                                ", but received depth(%d) and pad_top(%d).",
                                in_height,
                                pads[2]));
    PADDLE_ENFORCE_GT(
        in_height,
        pads[3],
        errors::InvalidArgument("The height of Input(X)'s dimension should be "
                                "greater than pad_bottom"
                                " in reflect mode"
                                ", but received depth(%d) and pad_bottom(%d).",
                                in_height,
                                pads[3]));

    PADDLE_ENFORCE_GT(
        in_width,
        pads[0],
        errors::InvalidArgument("The width of Input(X)'s dimension should be "
                                "greater than pad_left"
                                " in reflect mode"
                                ", but received depth(%d) and pad_left(%d).",
                                in_width,
                                pads[0]));
    PADDLE_ENFORCE_GT(
        in_width,
        pads[1],
        errors::InvalidArgument("The width of Input(X)'s dimension should be "
                                "greater than pad_right"
                                " in reflect mode"
                                ", but received depth(%d) and pad_right(%d).",
                                in_width,
                                pads[1]));
  } else if (mode == "replicate") {
    PADDLE_ENFORCE_NE(in_depth * in_height * in_width,
                      0,
                      errors::InvalidArgument(
                          "The input tensor size can not be 0 for circular "
                          "or replicate padding mode."));
  }

  std::vector<int> pads_xpu(6);
  pads_xpu[0] = pads[4];  // pf
  pads_xpu[1] = pads[5];  // pb
  pads_xpu[2] = pads[2];  // pt
  pads_xpu[3] = pads[3];  // pd
  pads_xpu[4] = pads[0];  // pl
  pads_xpu[5] = pads[1];  // pr

  if (mode == "reflect") {
    int r = xpu::reflection_pad3d(dev_ctx.x_context(),
                                  in_data,
                                  out_data,
                                  num,
                                  channels,
                                  in_depth,
                                  in_height,
                                  in_width,
                                  pads_xpu,
                                  is_ncdhw);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "reflection_pad3d");
  } else if (mode == "replicate") {
    int r = xpu::replication_pad3d(dev_ctx.x_context(),
                                   in_data,
                                   out_data,
                                   num,
                                   channels,
                                   in_depth,
                                   in_height,
                                   in_width,
                                   pads_xpu,
                                   is_ncdhw);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "replication_pad3d");
  } else if (mode == "constant") {
    int r = xpu::constant_pad3d(dev_ctx.x_context(),
                                in_data,
                                out_data,
                                num,
                                channels,
                                in_depth,
                                in_height,
                                in_width,
                                pads_xpu,
                                value,
                                is_ncdhw);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant_pad3d");
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(pad3d, XPU, ALL_LAYOUT, phi::Pad3dKernel, float) {}