elementwise_add_op.h 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/elementwise_op_function.h"
19
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
20 21 22 23

namespace paddle {
namespace operators {

C
chengduoZH 已提交
24 25
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
26
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
27 28
};

29 30 31 32 33 34 35 36 37 38
template <typename DeviceContext, typename T>
void default_elementwise_add(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
39 40 41 42 43 44
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
45 46 47 48 49 50 51 52 53
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
}

template <typename DeviceContext, typename T>
54 55 56 57 58 59
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
60 61 62
  default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
64
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
65 66
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
67 68
    using Tensor = framework::Tensor;

69 70 71
    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
C
chengduoZH 已提交
72
    z->mutable_data<T>(ctx.GetPlace());
73 74

    auto dims_equal = x->dims() == y->dims();
75
    if (dims_equal) {
76
      elementwise_add<DeviceContext, T>(ctx, x, y, z);
77
    } else {
78
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
79
    }
G
gongweibao 已提交
80 81 82 83
  }
};

template <typename T>
Y
Yu Yang 已提交
84 85
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
86 87
};

88
template <typename DeviceContext, typename T>
89 90 91 92 93 94 95 96 97
void default_elementwise_add_grad(const framework::ExecutionContext& ctx,
                                  const framework::Tensor* x,
                                  const framework::Tensor* y,
                                  const framework::Tensor* out,
                                  const framework::Tensor* dout,
                                  framework::Tensor* dx,
                                  framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");

98 99 100 101
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
102 103
}

104
template <typename DeviceContext, typename T>
105 106 107 108
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
109
                     const framework::Tensor* x, const framework::Tensor* y,
110
                     const framework::Tensor* out,
111 112
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
113 114 115 116 117 118 119 120 121 122 123 124 125
  auto blas = math::GetBlas<DeviceContext, T>(ctx);

  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

126
template <typename DeviceContext, typename T>
127 128 129 130
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
131
                     const framework::Tensor* x, const framework::Tensor* y,
132
                     const framework::Tensor* out,
133 134
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
135 136 137
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

Q
QI JUN 已提交
138
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
139
class ElementwiseAddGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
140 141
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
142 143 144 145 146 147 148
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
149

S
sneaxiy 已提交
150 151 152 153 154
    if (dx != nullptr) dx->ShareDataWith(*dout);
    if (dy == nullptr) return;

    if (x->dims() == y->dims()) {
      dy->ShareDataWith(*dout);
155
    } else {
S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
      dy->mutable_data<T>(ctx.GetPlace());
      // Perform reduction to dout to calculate dy
      const framework::DDim& x_dim = x->dims();
      framework::DDim y_dim = y->dims();
      int axis = ctx.Attr<int>("axis");
      axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
      y_dim = trim_trailing_singular_dims(y_dim);
      axis = (y_dim.size() == 0) ? x_dim.size() : axis;

      auto* device =
          ctx.template device_context<DeviceContext>().eigen_device();
      int pre, n, post;
      get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
      auto eigen_dout = framework::EigenTensor<T, 3>::From(
          *dout, framework::make_ddim({pre, n, post}));
      auto eigen_dy =
          framework::EigenTensor<T, 1>::From(*dy, framework::make_ddim({n}));
      eigen_dy.device(*device) = eigen_dout.sum(
          framework::EigenDim<2>::From(framework::make_ddim({0, 2})));
175
    }
G
gongweibao 已提交
176 177 178 179 180
  }
};

}  // namespace operators
}  // namespace paddle