malloc.cc 8.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

G
gongweibao 已提交
15 16
#include <vector>

L
liaogang 已提交
17
#include "glog/logging.h"
18 19
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/malloc.h"
L
liaogang 已提交
20

S
sneaxiy 已提交
21 22 23 24
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"

25 26 27 28 29 30
DEFINE_bool(init_allocated_mem, false,
            "It is a mistake that the values of the memory allocated by "
            "BuddyAllocator are always zeroed in some op's implementation. "
            "To find this error in time, we use init_allocated_mem to indicate "
            "that initializing the allocated memory with a small value "
            "during unit testing.");
L
liaogang 已提交
31
DECLARE_double(fraction_of_gpu_memory_to_use);
L
liaogang 已提交
32

S
sneaxiy 已提交
33 34 35 36
DEFINE_bool(use_legacy_allocator, true,
            "Whether to use the legacy allocator. If the new allocators have"
            "been well tested, we should remove these flag.");

37 38 39
namespace paddle {
namespace memory {

S
sneaxiy 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
namespace legacy {

using BuddyAllocator = detail::BuddyAllocator;

BuddyAllocator* GetCPUBuddyAllocator() {
  // We tried thread_local for inference::RNN1 model, but that not works much
  // for multi-thread test.
  static std::once_flag init_flag;
  static detail::BuddyAllocator* a = nullptr;

  std::call_once(init_flag, []() {
    a = new detail::BuddyAllocator(
        std::unique_ptr<detail::SystemAllocator>(new detail::CPUAllocator),
        platform::CpuMinChunkSize(), platform::CpuMaxChunkSize());
  });

  return a;
}

// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct NaiveAllocator {
  void* Alloc(size_t size) { return malloc(size); }

  void Free(void* p) {
    PADDLE_ENFORCE(p);
    free(p);
  }

  static NaiveAllocator* Instance() {
    static NaiveAllocator x;
    return &x;
  }

 private:
  std::mutex lock_;
};

template <>
void* Alloc<platform::CPUPlace>(const platform::CPUPlace& place, size_t size) {
  VLOG(10) << "Allocate " << size << " bytes on " << platform::Place(place);
  void* p = GetCPUBuddyAllocator()->Alloc(size);
  if (FLAGS_init_allocated_mem) {
    memset(p, 0xEF, size);
  }
  VLOG(10) << "  pointer=" << p;
  return p;
}

template <>
void Free<platform::CPUPlace>(const platform::CPUPlace& place, void* p) {
  VLOG(10) << "Free pointer=" << p << " on " << platform::Place(place);
  GetCPUBuddyAllocator()->Free(p);
}

template <>
size_t Used<platform::CPUPlace>(const platform::CPUPlace& place) {
  return GetCPUBuddyAllocator()->Used();
}

#ifdef PADDLE_WITH_CUDA

BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
  static std::once_flag init_flag;
  static detail::BuddyAllocator** a_arr = nullptr;

  std::call_once(init_flag, [gpu_id]() {
    int gpu_num = platform::GetCUDADeviceCount();
    PADDLE_ENFORCE(gpu_id < gpu_num, "gpu_id:%d should < gpu_num:%d", gpu_id,
                   gpu_num);

    a_arr = new BuddyAllocator*[gpu_num];
    for (int i = 0; i < gpu_num; i++) {
      a_arr[i] = nullptr;
      platform::SetDeviceId(i);
      a_arr[i] = new BuddyAllocator(
          std::unique_ptr<detail::SystemAllocator>(new detail::GPUAllocator(i)),
          platform::GpuMinChunkSize(), platform::GpuMaxChunkSize());

      VLOG(10) << "\n\nNOTE: each GPU device use "
               << FLAGS_fraction_of_gpu_memory_to_use * 100
               << "% of GPU memory.\n"
               << "You can set GFlags environment variable '"
               << "FLAGS_fraction_of_gpu_memory_to_use"
               << "' to change the fraction of GPU usage.\n\n";
    }
  });

  platform::SetDeviceId(gpu_id);
  return a_arr[gpu_id];
}

template <>
size_t Used<platform::CUDAPlace>(const platform::CUDAPlace& place) {
  return GetGPUBuddyAllocator(place.device)->Used();
}

template <>
void* Alloc<platform::CUDAPlace>(const platform::CUDAPlace& place,
                                 size_t size) {
  auto* buddy_allocator = GetGPUBuddyAllocator(place.device);
  auto* ptr = buddy_allocator->Alloc(size);
  if (ptr == nullptr) {
    int cur_dev = platform::GetCurrentDeviceId();
    platform::SetDeviceId(place.device);
    size_t avail, total;
    platform::GpuMemoryUsage(&avail, &total);
    LOG(WARNING) << "Cannot allocate " << size << " bytes in GPU "
                 << place.device << ", available " << avail << " bytes";
    LOG(WARNING) << "total " << total;
    LOG(WARNING) << "GpuMinChunkSize " << buddy_allocator->GetMinChunkSize();
    LOG(WARNING) << "GpuMaxChunkSize " << buddy_allocator->GetMaxChunkSize();
    LOG(WARNING) << "GPU memory used: " << Used<platform::CUDAPlace>(place);
    platform::SetDeviceId(cur_dev);
  }
  if (FLAGS_init_allocated_mem) {
    cudaMemset(ptr, 0xEF, size);
  }
  return ptr;
}

template <>
void Free<platform::CUDAPlace>(const platform::CUDAPlace& place, void* p) {
  GetGPUBuddyAllocator(place.device)->Free(p);
}

BuddyAllocator* GetCUDAPinnedBuddyAllocator() {
  static std::once_flag init_flag;
  static BuddyAllocator* ba = nullptr;

  std::call_once(init_flag, []() {
    ba = new BuddyAllocator(std::unique_ptr<detail::SystemAllocator>(
                                new detail::CUDAPinnedAllocator),
                            platform::CUDAPinnedMinChunkSize(),
                            platform::CUDAPinnedMaxChunkSize());
  });

  return ba;
}

template <>
size_t Used<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace& place) {
  return GetCUDAPinnedBuddyAllocator()->Used();
}

template <>
void* Alloc<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace& place,
                                       size_t size) {
  auto* buddy_allocator = GetCUDAPinnedBuddyAllocator();
  void* ptr = buddy_allocator->Alloc(size);

  if (ptr == nullptr) {
    LOG(WARNING) << "cudaMallocHost Cannot allocate " << size
                 << " bytes in CUDAPinnedPlace";
  }
  if (FLAGS_init_allocated_mem) {
    memset(ptr, 0xEF, size);
  }
  return ptr;
}

template <>
void Free<platform::CUDAPinnedPlace>(const platform::CUDAPinnedPlace& place,
                                     void* p) {
  GetCUDAPinnedBuddyAllocator()->Free(p);
}
#endif

struct AllocVisitor : public boost::static_visitor<void*> {
  inline explicit AllocVisitor(size_t size) : size_(size) {}

  template <typename Place>
  inline void* operator()(const Place& place) const {
    return Alloc<Place>(place, size_);
  }

 private:
  size_t size_;
};

struct FreeVisitor : public boost::static_visitor<void> {
  inline explicit FreeVisitor(void* ptr) : ptr_(ptr) {}

  template <typename Place>
  inline void operator()(const Place& place) const {
    Free<Place>(place, ptr_);
  }

 private:
  void* ptr_;
};

size_t Usage::operator()(const platform::CPUPlace& cpu) const {
  return Used(cpu);
}

size_t Usage::operator()(const platform::CUDAPlace& gpu) const {
#ifdef PADDLE_WITH_CUDA
  return Used(gpu);
#else
  PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}

size_t Usage::operator()(const platform::CUDAPinnedPlace& cuda_pinned) const {
#ifdef PADDLE_WITH_CUDA
  return Used(cuda_pinned);
#else
  PADDLE_THROW("'CUDAPinnedPlace' is not supported in CPU only device.");
#endif
}

size_t memory_usage(const platform::Place& p) {
  return boost::apply_visitor(Usage(), p);
}

class LegacyAllocation : public Allocation {
 public:
  using Allocation::Allocation;

  ~LegacyAllocation() {
    boost::apply_visitor(FreeVisitor(this->ptr()), this->place());
  }
};

}  // namespace legacy

267 268
std::shared_ptr<Allocation> AllocShared(const platform::Place& place,
                                        size_t size, Allocator::Attr attr) {
S
sneaxiy 已提交
269 270 271 272 273 274 275 276
  if (FLAGS_use_legacy_allocator) {
    void* p = boost::apply_visitor(legacy::AllocVisitor(size), place);
    return std::shared_ptr<Allocation>(
        new legacy::LegacyAllocation(p, size, place));
  } else {
    return allocation::AllocatorFacade::Instance().AllocShared(place, size,
                                                               attr);
  }
L
liaogang 已提交
277
}
L
liaogang 已提交
278

279 280
std::unique_ptr<Allocation> Alloc(const platform::Place& place, size_t size,
                                  Allocator::Attr attr) {
S
sneaxiy 已提交
281 282 283 284 285 286 287
  if (FLAGS_use_legacy_allocator) {
    void* p = boost::apply_visitor(legacy::AllocVisitor(size), place);
    return std::unique_ptr<Allocation>(
        new legacy::LegacyAllocation(p, size, place));
  } else {
    return allocation::AllocatorFacade::Instance().Alloc(place, size, attr);
  }
288
}
S
sneaxiy 已提交
289

290 291
}  // namespace memory
}  // namespace paddle