activation_grad_kernel.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/activation_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/activation_grad_impl.h"

namespace phi {

Y
YuanRisheng 已提交
24
#define DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(name, functor_class) \
25 26 27 28 29
  template <typename T, typename Context>                           \
  void name##GradKernel(const Context& dev_ctx,                     \
                        const DenseTensor& x,                       \
                        const DenseTensor& dout,                    \
                        DenseTensor* dx) {                          \
Y
YuanRisheng 已提交
30 31
    funcs::functor_class<T> functor;                                \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>(        \
32 33 34
        dev_ctx, &x, nullptr, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(      \
    name, functor_class, attr)                               \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& x,                \
                        const DenseTensor& dout,             \
                        float attr,                          \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr;                               \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);           \
48 49
  }

Y
YuanRisheng 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(      \
    name, functor_class, attr1, attr2)                       \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& x,                \
                        const DenseTensor& dout,             \
                        float attr1,                         \
                        float attr2,                         \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr1;                              \
    *(attrs[1].second) = attr2;                              \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, &x, nullptr, &dout, dx, functor);           \
65 66
  }

Y
YuanRisheng 已提交
67
#define DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(name, functor_class) \
68 69 70 71 72
  template <typename T, typename Context>                             \
  void name##GradKernel(const Context& dev_ctx,                       \
                        const DenseTensor& out,                       \
                        const DenseTensor& dout,                      \
                        DenseTensor* dx) {                            \
Y
YuanRisheng 已提交
73 74
    funcs::functor_class<T> functor;                                  \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>(          \
75 76 77
        dev_ctx, nullptr, &out, &dout, dx, functor);                  \
  }

Y
YuanRisheng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90
#define DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(    \
    name, functor_class, attr)                               \
  template <typename T, typename Context>                    \
  void name##GradKernel(const Context& dev_ctx,              \
                        const DenseTensor& out,              \
                        const DenseTensor& dout,             \
                        float attr,                          \
                        DenseTensor* dx) {                   \
    funcs::functor_class<T> functor;                         \
    auto attrs = functor.GetAttrs();                         \
    *(attrs[0].second) = attr;                               \
    ActivationGradImpl<T, Context, funcs::functor_class<T>>( \
        dev_ctx, nullptr, &out, &dout, dx, functor);         \
91 92
  }

Y
YuanRisheng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Cos, CosGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Tan, TanGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Acos, AcosGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Sin, SinGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Asin, AsinGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Atan, AtanGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Sinh, SinhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Cosh, CoshGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Asinh, AsinhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Acosh, AcoshGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Atanh, AtanhGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink, TanhShrinkGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPX(Silu, SiluGradFunctor);
P
phlrain 已提交
106
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Exp, ExpGradFunctor);
P
phlrain 已提交
107
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Expm1, Expm1GradFunctor);
Y
YuanRisheng 已提交
108 109 110 111 112 113

DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu, ReluGradFunctor);
DEFINE_CPU_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh, TanhGradFunctor);

DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu,
                                               LeakyReluGradFunctor,
114
                                               alpha);
Y
YuanRisheng 已提交
115 116 117 118 119 120 121 122 123 124 125 126
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu,
                                               ThresholdedReluGradFunctor,
                                               threshold);
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink,
                                               SoftShrinkGradFunctor,
                                               lambda);
DEFINE_CPU_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink,
                                               HardShrinkGradFunctor,
                                               threshold);

DEFINE_CPU_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu,
                                               BReluGradFunctor,
127 128
                                               t_min,
                                               t_max);
129

Y
YuanRisheng 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T, typename Context>
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx) {
  dev_ctx.template Alloc<T>(dx);

  auto x_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(&x, "Input", "X", "elu_grad"));
  auto out_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&out, "Input", "Out", "elu_grad"));
  auto dout_flatten = EigenVector<T>::Flatten(
      GET_DATA_SAFELY(&dout, "Input", "dOut", "elu_grad"));
  auto dx_flatten =
      EigenVector<T>::Flatten(GET_DATA_SAFELY(dx, "Output", "dX", "elu_grad"));
  auto* place = dev_ctx.eigen_device();

  if (alpha > 0) {
    funcs::ELUGradFunctor<T> functor;
    functor.alpha = alpha;
    functor(*place, x_flatten, out_flatten, dout_flatten, dx_flatten);
  } else {
    funcs::ELUGradNegativeAlphaFunctor<T> functor;
    functor.alpha = alpha;
    functor(*place, x_flatten, out_flatten, dout_flatten, dx_flatten);
  }
}

160 161 162 163
}  // namespace phi

PD_REGISTER_KERNEL(
    relu_grad, CPU, ALL_LAYOUT, phi::ReluGradKernel, float, double) {}
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define PD_REGISTER_ACTIVATION_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(name, CPU, ALL_LAYOUT, phi::func, float, double) {}

#define PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(name, func) \
  PD_REGISTER_KERNEL(                                         \
      name, CPU, ALL_LAYOUT, phi::func, float, double, phi::dtype::float16) {}

PD_REGISTER_ACTIVATION_GRAD_KERNEL(sin_grad, SinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cos_grad, CosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tan_grad, TanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acos_grad, AcosGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asin_grad, AsinGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atan_grad, AtanGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(sinh_grad, SinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(cosh_grad, CoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(asinh_grad, AsinhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(acosh_grad, AcoshGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(atanh_grad, AtanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_grad, TanhGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(brelu_grad, BReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(leaky_relu_grad, LeakyReluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(thresholded_relu_grad,
                                   ThresholdedReluGradKernel)
Y
YuanRisheng 已提交
188 189 190 191 192
PD_REGISTER_ACTIVATION_GRAD_KERNEL(soft_shrink_grad, SoftShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(hard_shrink_grad, HardShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(tanh_shrink_grad, TanhShrinkGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(elu_grad, EluGradKernel)
PD_REGISTER_ACTIVATION_GRAD_KERNEL(silu_grad, SiluGradKernel)
193 194 195 196 197 198 199

PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(relu_double_grad,
                                          ReluDoubleGradKernel)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(tanh_double_grad,
                                          TanhDoubleGradKernel)
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(leaky_relu_double_grad,
                                          LeakyReluDoubleGradKernel)
Y
YuanRisheng 已提交
200
PD_REGISTER_ACTIVATION_DOUBLE_GRAD_KERNEL(elu_double_grad, EluDoubleGradKernel)
201 202

PD_REGISTER_KERNEL(tanh_triple_grad,
203 204
                   CPU,
                   ALL_LAYOUT,
205
                   phi::TanhTripleGradKernel,
206 207 208
                   float,
                   double,
                   phi::dtype::float16) {}
P
phlrain 已提交
209 210 211 212 213 214 215 216 217

PD_REGISTER_KERNEL(exp_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::ExpGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
P
phlrain 已提交
218 219 220 221 222 223 224 225

PD_REGISTER_KERNEL(expm1_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::Expm1GradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}