basic_engine.cc 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/basic_engine.h"

#include <algorithm>
#include <memory>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
26

27 28 29 30 31 32 33
#include "paddle/fluid/imperative/gradient_accumulator.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/op_base.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/profiler.h"

34 35
DECLARE_bool(sort_sum_gradient);

36 37 38
namespace paddle {
namespace imperative {

39 40 41 42
void BasicEngine::Init(
    const std::vector<std::shared_ptr<VarBase>>& tensors,
    const std::vector<std::shared_ptr<VarBase>>& grad_tensors,
    bool retain_graph) {
43
  retain_graph_ = retain_graph;
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  PADDLE_ENFORCE_EQ(
      tensors.size(), grad_tensors.size(),
      platform::errors::Unavailable(
          "The size of tensors do not equal the size of grad_tensors,"
          "the size of tensors is %s, but the size of grad_tensors is %s.",
          tensors.size(), grad_tensors.size()));

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto var = tensors[i];
    auto grad_tensor = grad_tensors[i];

    auto init_node = var->GradVarBase()->GradNode();
    PADDLE_ENFORCE_EQ(
        var->GradVarBase()->GraphIsFreed(), false,
        platform::errors::Unavailable(
            "%s trying to backward through the same graph a second "
            "time, but this graph have already been freed. Please "
            "specify Tensor.backward(retain_graph=True) when "
            "calling backward at the first time.",
            var->Name()));

    if (!retain_graph) {
      VLOG(5) << "Clear the auto-grad graph from grad var " << var->Name()
              << " because of retain_graph=False when calling backward";
      var->GradVarBase()->SetGraphIsFreed(true);
      var->GradVarBase()->ClearGradNode();
    }
72

73 74 75 76 77 78
    if (init_node == nullptr || var->OverridedStopGradient()) {
      VLOG(3) << "Skip auto grad since there is no grad op for var or loss is "
                 "stop_gradient=True: "
              << var->Name();
      continue;
    }
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    VLOG(3) << "Init node of backward";

    PADDLE_ENFORCE_EQ(
        var->HasGradVar(), true,
        platform::errors::NotFound("Tensor %s has no gradient", var->Name()));

    auto& fwd_var = var->Var().Get<framework::LoDTensor>();
    auto* grad_var =
        var->GradVarBase()->MutableVar()->GetMutable<framework::LoDTensor>();
    VLOG(6) << "init loss grad:" << var->GradVarBase()->Name()
            << " as stop_gradient false";
    var->GradVarBase()->InnerSetOverridedStopGradient(false);
    auto* dev_ctx =
        platform::DeviceContextPool::Instance().Get(fwd_var.place());
    if (grad_tensor == nullptr) {
      grad_var->Resize(fwd_var.dims());
      grad_var->mutable_data(fwd_var.place(), fwd_var.type());
      operators::math::set_constant(*dev_ctx, grad_var, 1.0);
    } else {
      paddle::framework::TensorCopy(
          grad_tensor->Var().Get<framework::LoDTensor>(), fwd_var.place(),
          *dev_ctx, grad_var);
    }

    init_nodes_.push_back(init_node);
  }
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
}

void BasicEngine::CheckBackwardInputs(const OpBase& op) {
  for (auto& pair : op.GetInsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (auto& var : pair.second) {
      if (!var) {
        continue;
      }

      auto* inner_var = var->MutableVar();
      framework::Tensor* tensor = nullptr;
      if (!inner_var->IsInitialized() ||
          inner_var->IsType<framework::LoDTensor>()) {
        tensor = inner_var->GetMutable<framework::LoDTensor>();
      }

      if (tensor && !tensor->IsInitialized()) {
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(op.place());
128 129 130 131 132 133 134 135
        // NOTE(zhiqiu): since grad variable is ungenerated, so the dtype is not
        // correct. var->DataType() returns the default dtype, which is float32.
        // Here, we use the type of the corresponding forward datatype.

        tensor->mutable_data(op.place(), var->ForwardDataType());
        VLOG(6) << "Set ungenerated Grad: " << var->Name()
                << " as zero with dtype "
                << framework::DataTypeToString(var->ForwardDataType());
136 137 138 139 140 141
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
    }
  }
}

142 143 144
void BasicEngine::PrepareGradAccumulators(
    const OpBase& op,
    const std::vector<std::shared_ptr<GradOpNode>>& grad_pending_nodes) {
145 146 147 148 149 150 151 152
  for (const auto& pair : op.GetOutsMap()) {
    if (!pair.second.IsGrad()) {
      continue;
    }

    for (const auto& var : pair.second) {
      if (!var) continue;

153 154 155 156 157 158 159 160
      if (!var->HasGradNode()) {
        auto& accumulator = accumulators_[var.get()];
        if (!accumulator) {
          if (FLAGS_sort_sum_gradient) {
            accumulator.reset(new SortedGradientAccumulator(var.get()));
          } else {
            accumulator.reset(new EagerGradientAccumulator(var.get()));
          }
161 162
        }

163
        accumulator->IncreaseRefCnt();
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        VLOG(3) << "Prepare to acccumulate variable grad " << var->Name() << "("
                << var.get()
                << ") that don't have grad node  with reference count "
                << accumulator->RefCnt();
      } else {
        // Because Inplace op overwrites the grad_node of the input grad_var. So
        // only the information of grad_pending_node can be used to find the
        // grad_node of grad_var.
        bool find_grad_node_of_var = false;
        for (auto& grad_pending_node : grad_pending_nodes) {
          PADDLE_ENFORCE_NOT_NULL(
              grad_pending_node,
              platform::errors::NotFound("Grad pending node is nullptr."));
          for (auto& grad_pending_op : *grad_pending_node) {
            VLOG(6) << "Determine whether var (" << var->Name()
                    << ") is the input var of grad_pending_op ("
                    << grad_pending_op.Type() << ").";
            grad_pending_op.EnforceHasInOut();
            for (const auto& grad_pending_op_ins_pair :
                 grad_pending_op.GetInsMap()) {
              if (!grad_pending_op_ins_pair.second.IsGrad()) {
                continue;
              }
              for (const auto& pending_in_var :
                   grad_pending_op_ins_pair.second) {
                if (var == pending_in_var) {
                  VLOG(6) << "Var (" << var->Name()
                          << ") is the input var of grad_pending_op ("
                          << grad_pending_op.Type() << ").";
                  find_grad_node_of_var = true;
                  break;
                }
              }
              if (find_grad_node_of_var) {
                break;
              }
            }
          }
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
          if (find_grad_node_of_var) {
            auto& accumulator =
                accumulators_with_grad_node_[grad_pending_node][var.get()];

            if (!accumulator) {
              if (FLAGS_sort_sum_gradient) {
                accumulator.reset(new SortedGradientAccumulator(var.get()));
              } else {
                accumulator.reset(new EagerGradientAccumulator(var.get()));
              }
            }

            accumulator->IncreaseRefCnt();

            VLOG(3) << "Prepare to acccumulate variable grad " << var->Name()
                    << "(" << var.get()
                    << ") that has grad node with reference count "
                    << accumulator->RefCnt();
            break;
          }
        }
        PADDLE_ENFORCE_EQ(
            find_grad_node_of_var, true,
            platform::errors::NotFound(
                "No grad node corresponding to grad Tensor (%s) was found.",
                var->Name()));
230
      }
231 232 233 234 235 236 237
    }
  }
}

void BasicEngine::PrepareDeps() {
  PADDLE_ENFORCE_EQ(
      node_deps_.empty(), true,
238 239 240 241 242 243 244 245 246 247
      platform::errors::AlreadyExists("Op deps are not empty before preparing "
                                      "it for backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators are not empty before preparing it for "
                        "backward network execution."));
  PADDLE_ENFORCE_EQ(accumulators_with_grad_node_.empty(), true,
                    platform::errors::AlreadyExists(
                        "Accumulators with grad_node as the key are not empty "
                        "before preparing it for backward network execution."));
248 249 250 251

  std::queue<GradOpNode*> q;
  std::unordered_set<GradOpNode*> visited;

252 253 254 255
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
    q.push(init_nodes_[i].get());
    visited.insert(init_nodes_[i].get());
  }
256 257 258 259 260

  while (!q.empty()) {
    auto* cur_node = q.front();
    q.pop();

261 262
    const auto& grad_pending_nodes = cur_node->GradPendingNodes();

263
    for (auto& cur_op : *cur_node) {
Z
Zeng Jinle 已提交
264
      cur_op.EnforceHasInOut();
265
      PrepareGradAccumulators(cur_op, grad_pending_nodes);
266 267 268 269 270
    }

    for (auto& grad_pending_node : grad_pending_nodes) {
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
271
          platform::errors::NotFound("Grad pending node is nullptr."));
272 273 274 275 276 277 278 279 280
      ++node_deps_[grad_pending_node.get()];
      if (visited.count(grad_pending_node.get()) == 0) {
        visited.insert(grad_pending_node.get());
        q.push(grad_pending_node.get());
      }
    }
  }
}

281 282 283 284 285 286
static std::shared_ptr<NameVarMap<VariableWrapper>> CallGradientHooks(
    const NameVarMap<VariableWrapper>& bwd_ins, const std::string& op_type) {
  std::shared_ptr<NameVarMap<VariableWrapper>> tmp_ins_ptr = nullptr;
  for (const auto& pair : bwd_ins) {
    for (size_t i = 0; i < pair.second.size(); ++i) {
      auto& var = pair.second[i];
287
      if (var->HasVariableWrapperHook()) {
288 289 290
        if (tmp_ins_ptr == nullptr) {
          tmp_ins_ptr = std::make_shared<NameVarMap<VariableWrapper>>(bwd_ins);
        }
291 292 293
        VLOG(3) << "Call " << var->GetVariableWrapperHooks().size()
                << " hooks of " << op_type << "'s input `" << pair.first
                << "`'s var `" << var->Name() << "`.";
294
        auto tmp_var = var;
295
        for (const auto& hook_pair : var->GetVariableWrapperHooks()) {
296 297 298 299 300 301 302 303 304
          tmp_var = (*hook_pair.second)(tmp_var);
        }
        (*tmp_ins_ptr)[pair.first][i] = tmp_var;
      }
    }
  }
  return tmp_ins_ptr;
}

305
void BasicEngine::Execute() {
306
  if (init_nodes_.empty()) {
307 308 309 310 311 312
    return;
  }

  PrepareDeps();
  // Start execute Computation graph
  std::queue<std::shared_ptr<GradOpNode>> q;
313 314 315
  for (size_t i = 0; i < init_nodes_.size(); ++i) {
    q.push(std::move(init_nodes_[i]));
  }
316 317 318 319 320 321 322

  size_t op_num = 0;

  while (!q.empty()) {
    auto shared_cur_node = std::move(q.front());
    q.pop();

323 324
    auto& inplace_grad_name_map = shared_cur_node->InplaceGradNameMap();

325
    for (auto& cur_op : *shared_cur_node) {
326 327
      platform::RecordEvent op_type_record_event(cur_op.Type());

328 329 330 331 332
      ++op_num;

      // CheckBackWardInput
      CheckBackwardInputs(cur_op);

333
      // Step 1: Run Backward OP
334 335 336
      auto& bwd_ins = cur_op.GetInsMap();
      auto& bwd_outs = cur_op.GetOutsMap();

337 338 339 340 341 342 343
      /**
       * [ Why need temporary outputs here? ]
       *
       * - construct the temp output map, avoid to disrupt graph
       * - replace the element in the map by temp var, because a
       *   var may be coresponding to several grad var in one op
       */
344
      NameVarMap<VariableWrapper> tmp_outs(bwd_outs);
345

346 347 348 349 350 351 352 353 354 355
      for (auto& pair : tmp_outs) {
        if (!pair.second.IsGrad()) {
          continue;
        }

        for (auto& var : pair.second) {
          if (!var) {
            continue;
          }

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
          std::unordered_map<VariableWrapper*,
                             std::unique_ptr<GradientAccumulator>>::iterator
              iter;
          if (!var->HasGradNode()) {
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with no grad_node.";
            iter = accumulators_.find(var.get());
            PADDLE_ENFORCE_EQ(
                iter != accumulators_.end(), true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          } else {
            bool flag_find_grad = false;
            VLOG(10) << "Find gradient of var (" << var->Name()
                     << ") with grad_node.";
            for (auto& grad_pending_node :
                 shared_cur_node->GradPendingNodes()) {
              const auto& iter_grad_node =
                  accumulators_with_grad_node_.find(grad_pending_node);
              if (iter_grad_node != accumulators_with_grad_node_.end()) {
                iter = iter_grad_node->second.find(var.get());
                if (iter != iter_grad_node->second.end()) {
                  flag_find_grad = true;
                  break;
                }
              }
            }
            PADDLE_ENFORCE_EQ(
                flag_find_grad, true,
                platform::errors::NotFound(
                    "Cannot find gradient of variable %s", var->Name()));
          }
388

389 390
          // leaf_accumulators_ : hooks and accumulate-grad for leaf tensor,
          // it should be orderly and not reapeated.
391
          if (var->IsLeafGrad()) {
392 393 394 395
            if (std::find(leaf_accumulators_.begin(), leaf_accumulators_.end(),
                          iter->second.get()) == leaf_accumulators_.end()) {
              leaf_accumulators_.push_back(iter->second.get());
            }
396 397 398 399

            if (iter->second->HasInnerVar()) {
              var = iter->second->InnerVar();
            }
400 401
          }

402 403 404
          if (var->OverridedStopGradient() || iter->second->RefCnt() > 1) {
            auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
            tmp_var->SetType(var->Type());
405
            tmp_var->SetForwardDataType(var->ForwardDataType());
406 407 408 409
            var = tmp_var;
            need_accu_var_list_.emplace_back(iter->second.get(), var);
            VLOG(10) << "create temporary var of " << var->Name()
                     << " for sum gradient within this graph!";
410
          } else if (!inplace_grad_name_map.empty() &&
411 412
                     inplace_grad_name_map.count(pair.first) &&
                     bwd_ins.count(inplace_grad_name_map.at(pair.first))) {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
            // When calculate Inplace grad op, create a new output var.
            // If a tmp var has been created, there is no need to create it
            // again.
            for (auto& in_var :
                 bwd_ins.at(inplace_grad_name_map.at(pair.first))) {
              if (in_var == var) {
                auto tmp_var = std::make_shared<VariableWrapper>(var->Name());
                tmp_var->SetType(var->Type());
                tmp_var->SetForwardDataType(var->ForwardDataType());
                inplace_output_grad_var_list_.emplace_back(var, tmp_var);
                var = tmp_var;
                VLOG(10) << "Inplace grad op does not use the Inplace "
                            "strategy, a temporary output var ("
                         << var->Name() << ") will be created.";
                break;
              }
            }
430
          }
431 432 433
        }
      }

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
      VLOG(4) << "Check whether there is any inplace operation affecting "
                 "gradient calculation.";
      for (auto& pair : bwd_ins) {
        for (auto& var_wrapper : pair.second) {
          auto wrapper_version_snapshot = var_wrapper->InplaceVersionSnapshot();
          auto tensor_version =
              var_wrapper->MutableVar()->CurrentInplaceVersion();
          PADDLE_ENFORCE_EQ(
              tensor_version, wrapper_version_snapshot,
              platform::errors::PermissionDenied(
                  "Tensor '%s' used in gradient computation in grad op '%s' "
                  "has been "
                  "modified by an inplace operation. "
                  "Its version is %s but the expected version is %s. "
                  "Please fix your code to void calling an inplace operator "
                  "after using the Tensor which will used in gradient "
                  "computation.",
                  var_wrapper->Name(), cur_op.Type(), tensor_version,
                  wrapper_version_snapshot));

          VLOG(6) << " The version of Tensor '" << var_wrapper->Name()
                  << "' is [ " << wrapper_version_snapshot << " ]";
        }
      }

459 460 461 462 463 464 465 466 467 468 469 470 471
      /**
       * [ Why need temporary inputs here? ]
       *
       * - Hook execution should not change original input tensor.
       *   User can register hook for Tensor's gradient, It is expected
       *   that the hook only affects the gradient of the backward
       *   propagation, and does not affect the gradient value input
       *   as the hook.
       * - use `tmp_ins_ptr`, only copy bwd_ins when the var in bwd_ins
       *   hold hooks
       */
      auto tmp_ins_ptr = CallGradientHooks(bwd_ins, cur_op.Type());

472 473
      {
        VLOG(3) << "Start to execute grad op " << cur_op.Type();
474 475 476 477 478 479 480 481 482 483 484 485 486 487
        try {
          if (tmp_ins_ptr == nullptr) {
            OpBase::Run(cur_op.InnerOp(), bwd_ins, tmp_outs, cur_op.Attrs(),
                        cur_op.place());
          } else {
            OpBase::Run(cur_op.InnerOp(), *tmp_ins_ptr, tmp_outs,
                        cur_op.Attrs(), cur_op.place());
          }
        } catch (platform::EnforceNotMet& exception) {
          Clear();
          throw std::move(exception);
        } catch (std::exception& ex) {
          Clear();
          PADDLE_THROW(platform::errors::External("%s", ex.what()));
488
        }
489 490
      }

491 492 493 494
      for (auto& pair : inplace_output_grad_var_list_) {
        *pair.first = std::move(*pair.second);
      }

495 496 497 498 499 500 501 502 503 504
      // Step 2: Sum Gradient of This graph
      for (auto& pair : need_accu_var_list_) {
        pair.first->SumGrad(std::move(pair.second), cur_op.id());
      }

      // Step 3: Call Hooks && Sum Gradient with Pre-Graph && Call BackwardHooks
      for (auto* accumulator : leaf_accumulators_) {
        if (!accumulator->SumGradCompleted()) {
          continue;
        }
505 506
        // 1. Call Hooks for `inner_var_`
        accumulator->CallGradientHooks();
507

508
        // 2. Sum Gradient `inner_var_` to `var_` of Current or Previous Graph
509 510
        accumulator->AccumulateGrad();

511 512
        // 3. Call backward Hooks for `var_`
        accumulator->CallReduceHooks();
513 514
      }

515
      need_accu_var_list_.clear();
516
      inplace_output_grad_var_list_.clear();
517
      leaf_accumulators_.clear();
518

519
      if (!retain_graph_) {
520
        VLOG(3) << "Remove op after op " << cur_op.Type() << " runs";
521 522
        cur_op.ClearBackwardTrace();
      }
523 524 525 526
    }

    // Step 3: Collect ready ops
    for (auto& grad_pending_node : shared_cur_node->GradPendingNodes()) {
527 528 529
      PADDLE_ENFORCE_NOT_NULL(
          grad_pending_node,
          platform::errors::NotFound("Grad pending node is nullptr."));
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      auto iter = node_deps_.find(grad_pending_node.get());
      if (iter == node_deps_.end()) {
        continue;
      }

      if (--(iter->second) == 0) {
        q.push(grad_pending_node);
      }
    }
  }
  Clear();

  VLOG(1) << "Backward op number: " << op_num;
}

void BasicEngine::Clear() {
546
  init_nodes_.clear();
547 548
  node_deps_.clear();
  accumulators_.clear();
549
  accumulators_with_grad_node_.clear();
550
  need_accu_var_list_.clear();
551
  leaf_accumulators_.clear();
552 553 554 555
}

}  // namespace imperative
}  // namespace paddle