elementwise_add_op.h 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/fluid/operators/elementwise_op.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
G
gongweibao 已提交
21 22 23 24

namespace paddle {
namespace operators {

C
chengduoZH 已提交
25 26
template <typename T>
struct AddFunctor {
C
chengduoZH 已提交
27
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
C
chengduoZH 已提交
28 29
};

30 31 32 33 34 35 36 37 38 39
template <typename DeviceContext, typename T>
void default_elementwise_add(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
  ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                        AddFunctor<T>(), z);
}

template <typename DeviceContext, typename T>
40 41 42 43 44 45
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
46 47 48 49 50 51 52 53 54
  auto eigen_x = framework::EigenVector<T>::Flatten(*x);
  auto eigen_y = framework::EigenVector<T>::Flatten(*y);
  auto eigen_z = framework::EigenVector<T>::Flatten(*z);

  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
}

template <typename DeviceContext, typename T>
55 56 57 58 59 60
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add(const framework::ExecutionContext& ctx,
                const framework::Tensor* x, const framework::Tensor* y,
                framework::Tensor* z) {
61 62 63
  default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
}

Q
QI JUN 已提交
64
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
65
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
66 67
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
68 69
    using Tensor = framework::Tensor;

70 71 72
    const auto x = ctx.Input<Tensor>("X");
    const auto y = ctx.Input<Tensor>("Y");
    auto z = ctx.Output<Tensor>("Out");
C
chengduoZH 已提交
73
    z->mutable_data<T>(ctx.GetPlace());
74 75

    auto dims_equal = x->dims() == y->dims();
76
    if (dims_equal) {
77
      elementwise_add<DeviceContext, T>(ctx, x, y, z);
78
    } else {
79
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
80
    }
G
gongweibao 已提交
81 82 83 84
  }
};

template <typename T>
Y
Yu Yang 已提交
85 86
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
87 88
};

89
template <typename DeviceContext, typename T>
90 91 92 93 94 95 96 97 98
void default_elementwise_add_grad(const framework::ExecutionContext& ctx,
                                  const framework::Tensor* x,
                                  const framework::Tensor* y,
                                  const framework::Tensor* out,
                                  const framework::Tensor* dout,
                                  framework::Tensor* dx,
                                  framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");

99 100 101 102
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
103 104
}

105
template <typename DeviceContext, typename T>
106 107 108 109
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
110
                     const framework::Tensor* x, const framework::Tensor* y,
111
                     const framework::Tensor* out,
112 113
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
114 115 116 117 118 119 120 121 122 123 124 125 126
  auto blas = math::GetBlas<DeviceContext, T>(ctx);

  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

127
template <typename DeviceContext, typename T>
128 129 130 131
typename std::enable_if<
    !std::is_floating_point<T>::value ||
    !std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_add_grad(const framework::ExecutionContext& ctx,
132
                     const framework::Tensor* x, const framework::Tensor* y,
133
                     const framework::Tensor* out,
134 135
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
136 137 138
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}

Q
QI JUN 已提交
139
template <typename DeviceContext, typename T>
140
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
141 142
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
143 144
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
145 146 147 148 149
    using Tensor = framework::Tensor;

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
T
tensor-tang 已提交
150 151 152
    // skip out, x, y
    auto* out = dout;
    auto *x = dout, *y = dout;
153

T
tensor-tang 已提交
154 155 156
    if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr &&
        dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
157
    } else {
T
tensor-tang 已提交
158 159
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
160
    }
G
gongweibao 已提交
161 162 163 164 165
  }
};

}  // namespace operators
}  // namespace paddle