fused_transformer.py 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
18 19 20 21 22
from paddle import _C_ops

__all__ = []


23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def _verify_dropout_rate(dropout_rate):
    if not isinstance(dropout_rate, (float, int)):
        raise TypeError("dropout_rate argument should be a number")
    if dropout_rate < 0 or dropout_rate > 1:
        raise ValueError("dropout_rate argument should between 0 and 1")


def fused_feedforward(x,
                      linear1_weight,
                      linear2_weight,
                      linear1_bias=None,
                      linear2_bias=None,
                      ln1_scale=None,
                      ln1_bias=None,
                      ln2_scale=None,
                      ln2_bias=None,
                      dropout1_rate=0.5,
                      dropout2_rate=0.5,
                      activation="relu",
                      ln1_epsilon=1e-5,
                      ln2_epsilon=1e-5,
                      pre_layer_norm=False,
                      name=None):
    """
    This is a fusion operator to compute feed forward layer in transformer model architecture.
    This operator only supports running on GPU. The function of the operator is consistent with
    the following pseudo code:

    .. code-block:: python

        residual = src;
        if pre_layer_norm:
            src = layer_norm(src)
        src = linear(dropout(activation(dropout(linear(src)))))
        if not pre_layer_norm:
            src = layer_norm(out)

    Args:
        x (Tensor): the input tensor could be 3-D tensor, the input data type could be float16, float32 or float64, the shape is`[batch\_size, sequence\_length, d_model]`.
        linear1_weight (Tensor): The weight of first linear, the data type is same as `x`, the shape is `[d\_model, dim\_feedforward]`.
        linear2_weight (Tensor): The weight of second linear, the data type is same as `x`, the shape is `[dim\_feedforward, d\_model]`.
        linear1_bias (Tensor, optional): The bias of first linear, the data type is same as `x`, the shape is `[dim_feedforward]`. Default None.
        linear2_bias (Tensor, optional): The bias of second linear, the data type is same as `x`, the shape is `[d_model]`. Default None.
        ln1_scale (Tensor, optional): the weight of first layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln1_bias (Tensor, optional): The bias of first layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        ln2_scale (Tensor, optional): The weight of second layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln2_bias (Tensor, optional): The bias of second layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        dropout1_rate (float, optional): The first dropout probability of setting units to zero. Default 0.5.
        dropout2_rate (float, optional): The second dropout probability of setting units to zero. Default 0.5.
        activation (str, optional): The activation. Default "relu".
        ln1_epsilon (float, optional): Small float of first layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        ln2_epsilon (float, optional): Small float of second layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        pre_layer_norm (bool, optional): add layer_norm in the pre-processing stage or post-processing state.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output Tensor, the data type and shape is same as `x`.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            import numpy as np
            x_data = np.random.random((1, 8, 8)).astype("float32")
            linear1_weight_data = np.random.random((8, 8)).astype("float32")
            linear2_weight_data = np.random.random((8, 8)).astype("float32")
            x = paddle.to_tensor(x_data)
            linear1_weight = paddle.to_tensor(linear1_weight_data)
            linear2_weight = paddle.to_tensor(linear2_weight_data)
93
            out = paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            print(out.numpy().shape)
            # (1, 8, 8)
    """
    _verify_dropout_rate(dropout1_rate)
    _verify_dropout_rate(dropout2_rate)

    if in_dygraph_mode():
        out, _, _, _, _, _, _, _, _, _, _ = _C_ops.fused_feedforward(
            x, None, None, linear1_weight, linear1_bias, linear2_weight,
            linear2_bias, ln1_scale, ln1_bias, ln2_scale, ln2_bias,
            'pre_layer_norm', pre_layer_norm, 'ln1_epsilon', ln1_epsilon,
            'ln2_epsilon', ln2_epsilon, 'act_method', activation,
            'dropout1_rate', dropout1_rate, 'dropout2_rate', dropout2_rate)
        return out

    helper = LayerHelper("fused_feedforward")
    dtype = x.dtype
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'fused_feedforward')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fused_feedforward')

    out = helper.create_variable_for_type_inference(x.dtype)
    dropout1_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    dropout2_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    ln1_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    linear1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout2_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)

    helper.append_op(
        type='fused_feedforward',
        inputs={
            'X': x,
            'Linear1Weight': linear1_weight,
            'Linear1Bias': linear1_bias,
            'Linear2Weight': linear2_weight,
            'Linear2Bias': linear2_bias,
            'Ln1Scale': ln1_scale,
            'Ln1Bias': ln1_bias,
            'Ln2Scale': ln2_scale,
            'Ln2Bias': ln2_bias,
        },
        outputs={
            'Out': out,
            'Dropout1Mask': dropout1_mask,
            'Dropout2Mask': dropout2_mask,
            'Ln1Mean': ln1_mean,
            'Ln1Variance': ln1_variance,
            'Ln2Mean': ln2_mean,
            'Ln2Variance': ln2_variance,
            'Linear1Out': linear1_out,
            'Ln1Out': ln1_out,
            'Dropout1Out': dropout1_out,
            'Dropout2Out': dropout2_out,
        },
        attrs={
            'dropout1_rate': dropout1_rate,
            'dropout2_rate': dropout2_rate,
            'act_method': activation,
            'pre_layer_norm': pre_layer_norm,
            'ln1_epsilon': ln1_epsilon,
            'ln2_epsilon': ln2_epsilon,
        })
    return out


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
def fused_multi_head_attention(x,
                               qkv_weight,
                               linear_weight,
                               pre_layer_norm=False,
                               pre_ln_scale=None,
                               pre_ln_bias=None,
                               ln_scale=None,
                               ln_bias=None,
                               pre_ln_epsilon=1e-05,
                               qkv_bias=None,
                               linear_bias=None,
                               attn_mask=None,
                               dropout_rate=0.5,
                               attn_dropout_rate=0.5,
                               ln_epsilon=1e-05,
                               name=None):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
194
    to information from different representation subspaces. This API only
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    support self_attention. The pseudo code is as follows:
    if pre_layer_norm:
    	out = layer_norm(x);
        out = linear(out) + qkv)bias
    else:
	out = linear(x) + bias;
    out = transpose(out, perm=[2, 0, 3, 1, 4]);
    # extract q, k and v from out.
    q = out[0:1,::]
    k = out[1:2,::]
    v = out[2:3,::]
    out = q * k^t;
    out = attn_mask + out;
    out = softmax(out);
    out = dropout(out);
    out = out * v;
211
    out = transpose(out, perm=[0, 2, 1, 3]);
212 213 214 215
    out = out_linear(out);
    out = layer_norm(x + dropout(linear_bias + out));

    Parameters:
216
        x (Tensor): The input tensor of fused_multi_head_attention. The shape is
217 218 219
            `[batch\_size, sequence\_len, embed\_dim]`.
        qkv_weight (Tensor): The qkv weight tensor. The shape is `[3, num_head, dim_head, dim_embed]`.
        linear_weight (Tensor): The linear weight tensor. The shape is `[embed_dim, embed_dim]`.
220
        pre_layer_norm (bool, optional): whether it is pre_layer_norm or post_layer_norm architecture.
221 222 223 224 225
            Default False.
        pre_ln_scale (Tensor, optional): The weight tensor of pre layernorm. Default None.
        pre_ln_bias (Tensor, optional): The bias tensor of pre layernorm. Default None.
        ln_scale (Tensor, optional): The weight tensor of layernorm. Default None.
        ln_bias (Tensor, optional): The bias tensor of layernorm. Default None.
226
        pre_ln_epsilon (float, optional): Small float value added to denominator of the pre layer_norm
227
            to avoid dividing by zero. Default is 1e-5.
228
        qkv_bias (Tensor, optional): The bias of qkv computation. The shape is `[3, num_head, dim_head]`.
229 230 231 232
            Default None.
        linear_bias (Tensor, optional): The bias of linear. The shape is `[embed_dim]`. Default None.
        attn_mask (Tensor, optional):
        dropout_rate (float, optional): The dropout probability used on attention
233
            weights to drop some attention targets for the dropout after attention.
234 235
            0 for no dropout. Default 0.
        attn_dropout_rate (float, optional): The dropout probability used on attention
236
            weights to drop some attention targets for the dropout in attention.
237
            0 for no dropout. Default 0.
238
        ln_epsilon (float, optional): Small float value added to denominator of layer_norm
239
            to avoid dividing by zero. Default is 1e-5.
240

241 242 243
    Examples:

        .. code-block:: python
244 245

            # required: gpu
246
            import paddle
247
            import paddle.incubate.nn.functional as F
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand(shape=(2, 4, 128), dtype="float32")
            # qkv_weight: [3, num_head, dim_head, dim_embed]
            qkv_weight = paddle.rand(shape=(3, 4, 32, 128), dtype="float32")
            # qkv_bias: [3, num_head, dim_head]
            qkv_bias = paddle.rand(shape=(3, 4, 32), dtype="float32")
            # linear_weight: [embed_dim, embed_dim]
            linear_weight = paddle.rand(shape=(128, 128), dtype="float32")
            # linear_bias: [embed_dim]
            linear_bias = paddle.rand(shape=[128], dtype="float32")
            # self attention mask: [batch_size, num_heads, seq_len, seq_len]
            attn_mask = paddle.rand(shape=(2, 4, 4, 4), dtype="float32")

            # output: [batch_size, seq_len, embed_dim]
            output = F.fused_multi_head_attention(
                x, qkv_weight, linear_weight, False,
                None, None, None, None, 1e-5, qkv_bias,
                linear_bias, attn_mask)
            # [2, 4, 128]
            print(output.shape)
    """
    if in_dygraph_mode():
271 272
        # pre_ln_mean, pre_ln_variance, pre_ln_out, qkv_out, qkv_bias_out, transpose_out, qk_out,
        # qktv_out, softmax_out, attn_dropout_mask_out, attn_dropout_out, attn_mask_out, fmha_out,
273 274 275 276 277 278 279 280
        # linear_out, dropout_mask_out, ln_mean_out, ln_var_out, bias_dropout_residual_out, final_out
        _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, final_out = _C_ops.fused_attention(
            x, pre_ln_scale, pre_ln_bias, qkv_weight, qkv_bias, attn_mask,
            linear_weight, linear_bias, ln_scale, ln_bias, 'pre_layer_norm',
            pre_layer_norm, 'epsilon', pre_ln_epsilon, 'dropout_rate',
            dropout_rate, 'attn_dropout_rate', attn_dropout_rate, 'ln_epsilon',
            ln_epsilon)
        return final_out