manipulation.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
Wilber 已提交
15 16
from __future__ import print_function

17
from ..fluid.layers import core, reshape
W
Wilber 已提交
18 19 20
from ..fluid.layer_helper import LayerHelper
from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
21 22
from ..fluid.layers.tensor import fill_constant
from ..fluid.layers import utils
myq406450149's avatar
myq406450149 已提交
23
import numpy as np
24
# TODO: define functions to manipulate a tensor  
25 26 27 28 29 30 31 32 33
from ..fluid.layers import cast  #DEFINE_ALIAS
from ..fluid.layers import reshape  #DEFINE_ALIAS
from ..fluid.layers import scatter  #DEFINE_ALIAS
from ..fluid.layers import slice  #DEFINE_ALIAS
from ..fluid.layers import strided_slice  #DEFINE_ALIAS
from ..fluid.layers import transpose  #DEFINE_ALIAS
from ..fluid.layers import unique  #DEFINE_ALIAS
from ..fluid.layers import unstack  #DEFINE_ALIAS

34 35 36 37 38
from ..fluid.layers import gather_nd  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd_add  #DEFINE_ALIAS
from ..fluid.layers import scatter_nd  #DEFINE_ALIAS
from ..fluid.layers import shard_index  #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts  #DEFINE_ALIAS
L
Leo Chen 已提交
39
from ..fluid import layers
40
import paddle
41

W
Wilber 已提交
42
__all__ = [
43 44 45
    'cast',
    'concat',
    'expand',
L
lilong12 已提交
46
    'broadcast_to',
47 48 49 50 51 52 53 54 55 56 57 58
    'expand_as',
    'flatten',
    'gather',
    'gather_nd',
    'reshape',
    'reverse',
    'scatter',
    'scatter_nd_add',
    'scatter_nd',
    'shard_index',
    'slice',
    'split',
59
    'chunk'
60 61 62 63 64 65 66 67 68 69 70
    'squeeze',
    'stack',
    'strided_slice',
    'transpose',
    'unique',
    'unique_with_counts',
    'unsqueeze',
    'unstack',
    'flip',
    'unbind',
    'roll',
L
lilong12 已提交
71
    'tile',
W
Wilber 已提交
72 73 74
]


75 76 77
def concat(x, axis=0, name=None):
    """
	:alias_main: paddle.concat
78
	:alias: paddle.tensor.concat, paddle.tensor.manipulation.concat
79 80 81 82

    This OP concatenates the input along the axis.

    Args:
83 84
        x(list|tuple): ``x`` is a Tensor list or Tensor tuple which is with data type bool, float16, 
            float32, float64, int32, int64. All the Tensors in ``x`` must have same data type.
85 86 87 88
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 
            or int64. The effective range is [-R, R), where R is Rank(x). When ``axis < 0``,
            it works the same way as ``axis+R``. Default is 0.
89 90 91 92
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Raises:
93 94
        TypeError: ``x`` must be list or tuple.
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32 and int64. 
95
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
96 97 98
        TypeError: All the Tensors in ``x`` must have the same data type.

    Returns:
99
        Tensor: A Tensor with the same data type as ``x``.
100 101 102 103 104 105 106

    Examples:
        .. code-block:: python
            
            import paddle
            import numpy as np
            
107
            paddle.disable_static()  # Now we are in imperative mode
108 109 110 111 112 113
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
114 115 116
            x1 = paddle.to_variable(in1)
            x2 = paddle.to_variable(in2)
            x3 = paddle.to_variable(in3)
117 118 119
            zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
            # When the axis is negative, the real axis is (axis + Rank(x))
            # As follow, axis is -1, Rank(x) is 2, the real axis is 1
120 121 122
            out1 = paddle.concat(x=[x1, x2, x3], axis=-1)
            out2 = paddle.concat(x=[x1, x2], axis=0)
            out3 = paddle.concat(x=[x1, x2], axis=zero)
123 124 125 126 127 128 129 130 131
            # out1
            # [[ 1  2  3 11 12 13 21 22]
            #  [ 4  5  6 14 15 16 23 24]]
            # out2 out3
            # [[ 1  2  3]
            #  [ 4  5  6]
            #  [11 12 13]
            #  [14 15 16]]
    """
132
    check_type(x, 'x', (list, tuple), 'concat')
133 134 135
    return paddle.fluid.layers.concat(input=x, axis=axis, name=name)


Y
yaoxuefeng 已提交
136
def flip(x, axis, name=None):
W
Wilber 已提交
137
    """
138 139
	:alias_main: paddle.flip
	:alias: paddle.flip,paddle.tensor.flip,paddle.tensor.manipulation.flip
S
swtkiwi 已提交
140

W
Wilber 已提交
141

Y
yaoxuefeng 已提交
142
    Reverse the order of a n-D tensor along given axis in axis.
W
Wilber 已提交
143 144

    Args:
Y
yaoxuefeng 已提交
145
        x (Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor x
W
Wilber 已提交
146
            should be float32, float64, int32, int64, bool.
Y
yaoxuefeng 已提交
147
        axis (list): The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
W
Wilber 已提交
148 149 150 151
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
Y
yaoxuefeng 已提交
152
        Variable: Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
W
Wilber 已提交
153 154 155 156 157 158

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
Y
yaoxuefeng 已提交
159

160
          paddle.disable_static()
Y
yaoxuefeng 已提交
161 162 163 164

          image_shape=(3, 2, 2)
          x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
          x = x.astype('float32')
165
          img = paddle.to_variable(x)
Y
yaoxuefeng 已提交
166 167 168
          out = paddle.flip(img, [0,1])

          print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
W
Wilber 已提交
169 170
    """
    helper = LayerHelper("flip", **locals())
Y
yaoxuefeng 已提交
171 172
    check_type(x, 'X', (Variable), 'flip')
    dtype = helper.input_dtype('x')
W
Wilber 已提交
173 174 175
    check_dtype(dtype, 'X',
                ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
                'flip')
Y
yaoxuefeng 已提交
176
    check_type(axis, 'axis', (list, tuple), 'flip')
W
Wilber 已提交
177 178 179 180 181 182 183
    if name is None:
        out = helper.create_variable_for_type_inference(dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="flip",
Y
yaoxuefeng 已提交
184
        inputs={"X": x},
W
Wilber 已提交
185
        outputs={"Out": out},
Y
yaoxuefeng 已提交
186
        attrs={"axis": axis})
W
Wilber 已提交
187
    return out
188 189


Y
yaoxuefeng 已提交
190 191 192
reverse = flip  #DEFINE_ALIAS


193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
def flatten(x, start_axis=0, stop_axis=-1, name=None):
    """
    **Flatten op**

    Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.

    For Example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 1
            end_axis = 2

          We get:
            Out.shape = (3, 1000 * 100, 2)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            start_axis = 0
            stop_axis = -1

          We get:
            Out.shape = (3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of number of dimentions >= axis. A tensor with data type float32,
                      float64, int8, int32, int64.
        start_axis (int): the start axis to flatten
        stop_axis (int): the stop axis to flatten
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.

    Returns:
        Variable: A tensor with the contents of the input tensor, with input \
                  axes flattened by indicated start axis and end axis. \
                  A Tensor with data type same as input x.

    Raises:
        ValueError: If x is not a Variable.
        ValueError: If start_axis or stop_axis is illegal.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

251
            paddle.disable_static()
252 253 254 255 256

            image_shape=(2, 3, 4, 4)
            x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
            x = x.astype('float32')
            
257
            img = paddle.to_variable(x)
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            out = paddle.flatten(img, start_axis=1, stop_axis=2)
            # out shape is [2, 12, 4]
    """
    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten')
    helper = LayerHelper('flatten', **locals())

    x_dim = len(x.shape)
    if not (isinstance(start_axis, int)) or (
            start_axis > x_dim - 1) or start_axis < -x_dim:
        raise ValueError(
            "The start_axis should be a int, and in range [-rank(x), rank(x))")
    if not (isinstance(stop_axis, int)) or (
            stop_axis > x_dim - 1) or stop_axis < -x_dim:
        raise ValueError(
            "The stop_axis should be a int, and in range [-rank(x), rank(x))")
    if start_axis < 0:
        start_axis = start_axis + x_dim
    if stop_axis < 0:
        stop_axis = stop_axis + x_dim
    if start_axis > stop_axis:
        raise ValueError("The stop_axis should be larger than stat_axis")

    if in_dygraph_mode():
        dy_out, _ = core.ops.flatten_contiguous_range(
            x, 'start_axis', start_axis, 'stop_axis', stop_axis)
        return dy_out

    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='flatten_contiguous_range',
        inputs={"X": x},
        outputs={'Out': out,
                 'XShape': x_shape},
        attrs={"start_axis": start_axis,
               "stop_axis": stop_axis})
    return out


Y
yaoxuefeng 已提交
301
def roll(x, shifts, axis=None, name=None):
302
    """
303 304
	:alias_main: paddle.roll
	:alias: paddle.roll,paddle.tensor.roll,paddle.tensor.manipulation.roll
S
swtkiwi 已提交
305

Y
yaoxuefeng 已提交
306 307 308
    Roll the `x` tensor along the given axis(axes). With specific 'shifts', Elements that 
    roll beyond the last position are re-introduced at the first according to 'shifts'. 
    If a axis is not specified, 
309 310 311
    the tensor will be flattened before rolling and then restored to the original shape.

    Args:
Y
yaoxuefeng 已提交
312
        x (Variable): The x tensor variable as input.
313
        shifts (int|list|tuple): The number of places by which the elements
Y
yaoxuefeng 已提交
314 315
                           of the `x` tensor are shifted.
        axis (int|list|tuple|None): axis(axes) along which to roll.
316 317

    Returns:
Y
yaoxuefeng 已提交
318
        Variable: A Tensor with same data type as `x`.
319 320 321 322 323 324 325 326 327 328

    Examples:
        .. code-block:: python
            import numpy as np
            import paddle
            import paddle.fluid as fluid

            data = np.array([[1.0, 2.0, 3.0],
                             [4.0, 5.0, 6.0],
                             [7.0, 8.0, 9.0]])
329 330
            paddle.disable_static()
            x = paddle.to_variable(data)
Y
yaoxuefeng 已提交
331 332 333 334 335 336 337 338 339 340
            out_z1 = paddle.roll(x, shifts=1)
            print(out_z1.numpy())
            #[[9. 1. 2.]
            # [3. 4. 5.]
            # [6. 7. 8.]]
            out_z2 = paddle.roll(x, shifts=1, axis=0)
            print(out_z2.numpy())
            #[[7. 8. 9.]
            # [1. 2. 3.]
            # [4. 5. 6.]]
341 342
    """
    helper = LayerHelper("roll", **locals())
Y
yaoxuefeng 已提交
343
    origin_shape = x.shape
344 345
    if type(shifts) == int:
        shifts = [shifts]
Y
yaoxuefeng 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
    if type(axis) == int:
        axis = [axis]

    len_origin_shape = len(origin_shape)
    if axis:
        for i in range(len(axis)):
            if axis[i] >= len_origin_shape or axis[i] < -len_origin_shape:
                raise ValueError(
                    "axis is out of range, it should be in range [{}, {}), but received {}".
                    format(-len_origin_shape, len_origin_shape, axis))

    if axis:
        check_type(axis, 'axis', (list, tuple), 'roll')
359 360 361
    check_type(shifts, 'shifts', (list, tuple), 'roll')

    if in_dygraph_mode():
Y
yaoxuefeng 已提交
362 363 364 365
        if axis is None:
            x = core.ops.reshape(x, 'shape', [-1, 1])
            axis = [0]
        out = core.ops.roll(x, 'axis', axis, 'shifts', shifts)
366 367
        return core.ops.reshape(out, 'shape', origin_shape)

Y
yaoxuefeng 已提交
368
    out = helper.create_variable_for_type_inference(x.dtype)
369

Y
yaoxuefeng 已提交
370 371 372
    if axis is None:
        x = reshape(x, shape=[-1, 1])
        axis = [0]
373 374 375

    helper.append_op(
        type='roll',
Y
yaoxuefeng 已提交
376
        inputs={'X': x},
377
        outputs={'Out': out},
Y
yaoxuefeng 已提交
378
        attrs={'axis': axis,
379 380 381
               'shifts': shifts})
    out = reshape(out, shape=origin_shape, inplace=True)
    return out
382 383


L
Leo Chen 已提交
384
def stack(x, axis=0, name=None):
385
    """
386
	:alias_main: paddle.stack
L
Leo Chen 已提交
387
	:alias: paddle.stack, paddle.tensor.stack, paddle.tensor.manipulation.stack
S
swtkiwi 已提交
388

L
Leo Chen 已提交
389 390 391 392 393 394 395
    This OP stacks all the input tensors ``x`` along ``axis`` dimemsion. 
    All tensors must be of the same shape and same dtype.
    
    For example, given N tensors of shape [A, B], if ``axis == 0``, the shape of stacked 
    tensor is [N, A, B]; if ``axis == 1``, the shape of stacked 
    tensor is [A, N, B], etc.
    
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    .. code-block:: text

        Case 1:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
            Out.dims = [3, 1, 2]
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]


        Case 2:

          Input:
            x[0].shape = [1, 2]
            x[0].data = [ [1.0 , 2.0 ] ]
            x[1].shape = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[2].shape = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]


          Attrs:
L
Leo Chen 已提交
431
            axis = 1 or axis = -2  # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1.
432 433 434 435 436 437 438 439

          Output:
            Out.shape = [1, 3, 2]
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]

    Args:
L
Leo Chen 已提交
440 441
        x (Tensor|list[Tensor]): Input ``x`` can be a single tensor, or a ``list`` of tensors.
                                     If ``x`` is a ``list``, the Tensors in ``x``
442
                                     must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.
L
Leo Chen 已提交
443 444 445 446 447
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``,
                              where ``R`` is the number of dimensions of the first input tensor ``x[0]``. 
                              If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
        
448
    Returns:
L
Leo Chen 已提交
449
        Tensor: The stacked tensor with same data type as input.
450 451 452

    Example:    
        .. code-block:: python
L
Leo Chen 已提交
453

454
            import paddle
L
Leo Chen 已提交
455
            import numpy as np
456 457 458 459 460

            data1 = np.array([[1.0, 2.0]])
            data2 = np.array([[3.0, 4.0]])
            data3 = np.array([[5.0, 6.0]])

461 462 463 464
            paddle.disable_static()
            x1 = paddle.to_variable(data1)
            x2 = paddle.to_variable(data2)
            x3 = paddle.to_variable(data3)
L
Leo Chen 已提交
465 466 467 468 469 470 471 472 473

            out = paddle.stack([x1, x2, x3], axis=0)
            print(out.shape)  # [3, 1, 2]
            print(out.numpy())
            # [[[1., 2.]],
            #  [[3., 4.]],
            #  [[5., 6.]]]
    """
    return layers.stack(x, axis, name)
474 475


476
def split(x, num_or_sections, axis=0, name=None):
477
    """
478
	:alias_main: paddle.split
479 480
        :alias: paddle.tensor.split, paddle.tensor.manipulation.split
    
481
    Split the input tensor into multiple sub-Tensors.
482
    
483
    Args:
484 485 486 487 488 489 490 491 492 493 494
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        num_or_sections (int|list|tuple): If ``num_or_sections`` is an int, then ``num_or_sections`` 
            indicates the number of equal sized sub-Tensors that the ``x`` will be divided into.
            If ``num_or_sections`` is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'  dimension orderly.
            The length of the list must not  be larger than the ``x`` 's size of specified ``axis``.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
495
    Returns:
496
        list(Tensor): The list of segmented Tensors.
497
    Raises:
498 499 500
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``num_or_sections`` is not int, list or tuple.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
501 502
    Example:
        .. code-block:: python
503
            
504 505 506
            import numpy as np
            import paddle
            
507
            paddle.disable_static()
508 509
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
510
            x = paddle.to_variable(x_np)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

            out0, out1, out22 = paddle.split(x, num_or_sections=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
533
    """
534 535
    return paddle.fluid.layers.split(
        input=x, num_or_sections=num_or_sections, dim=axis, name=name)
536 537


L
Leo Chen 已提交
538
def squeeze(x, axis=None, name=None):
539
    """
540
	:alias_main: paddle.squeeze
L
Leo Chen 已提交
541
	:alias: paddle.squeeze, paddle.tensor.squeeze, paddle.tensor.manipulation.squeeze
S
swtkiwi 已提交
542

L
Leo Chen 已提交
543
    This OP will squeeze the dimension(s) of size 1 of input tensor x's shape. 
544

L
Leo Chen 已提交
545 546 547
    If axis is provided, it will remove the dimension(s) by given axis that of size 1. 
    If the dimension of given axis is not of size 1, the dimension remain unchanged. 
    If axis is not provided, all dims equal of size 1 will be removed.
548 549 550 551 552 553

    .. code-block:: text

        Case1:

          Input:
L
Leo Chen 已提交
554 555
            x.shape = [1, 3, 1, 5]  # If axis is not provided, all dims equal of size 1 will be removed.
            axis = None
556
          Output:
L
Leo Chen 已提交
557
            out.shape = [3, 5]
558 559 560 561

        Case2:

          Input:
L
Leo Chen 已提交
562 563 564 565 566 567 568 569 570 571
            x.shape = [1, 3, 1, 5]  # If axis is provided, it will remove the dimension(s) by given axis that of size 1.
            axis = 0
          Output:
            out.shape = [3, 1, 5]
        
        Case4:

          Input:
            x.shape = [1, 3, 1, 5]  # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. 
            axis = [0, 2, 3]
572
          Output:
L
Leo Chen 已提交
573
            out.shape = [3, 5]
574

L
Leo Chen 已提交
575
        Case4:
576 577

          Input:
L
Leo Chen 已提交
578 579
            x.shape = [1, 3, 1, 5]  # If axis is negative, axis = axis + ndim (number of dimensions in x). 
            axis = [-2]
580
          Output:
L
Leo Chen 已提交
581
            out.shape = [1, 3, 5]
582 583

    Args:
584
        x (Tensor): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
L
Leo Chen 已提交
585
        axis (int|list|tuple, optional): An integer or list of integers, indicating the dimensions to be squeezed. Default is None.
586 587 588
                          The range of axis is :math:`[-ndim(x), ndim(x))`.
                          If axis is negative, :math:`axis = axis + ndim(x)`.
                          If axis is None, all the dimensions of x of size 1 will be removed.
589 590 591
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.

    Returns:
592
        Tensor: Squeezed Tensor with the same data type as input Tensor.
593 594 595

    Examples:
        .. code-block:: python
596

597 598
            import paddle

599
            paddle.disable_static()
L
Leo Chen 已提交
600 601 602 603
            
            x = paddle.rand([5, 1, 10])
            output = paddle.squeeze(x, axis=1)
            # output.shape [5, 10]
604 605

    """
L
Leo Chen 已提交
606 607 608 609 610 611
    if axis is None:
        axis = []
    elif isinstance(axis, int):
        axis = [axis]
    elif isinstance(axis, tuple):
        axis = list(axis)
612

L
Leo Chen 已提交
613
    return layers.squeeze(x, axis, name)
614 615


616
def unsqueeze(x, axis, name=None):
617
    """
618
	:alias_main: paddle.unsqueeze
619
	:alias: paddle.unsqueeze, paddle.tensor.unsqueeze, paddle.tensor.manipulation.unsqueeze
620

621 622 623
    Insert single-dimensional entries to the shape of input Tensor ``x``. Takes one
    required argument axis, a dimension or list of dimensions that will be inserted.
    Dimension indices in axis are as seen in the output tensor.
624 625

    Args:
626 627 628 629 630 631
        x (Tensor): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
        axis (int|list|tuple|Tensor): Indicates the dimensions to be inserted. The data type is ``int32`` . 
                                    If ``axis`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. 
                                    If ``axis`` is a Tensor, it should be an 1-D Tensor .
                                    If ``axis`` is negative, ``axis = axis + ndim(x) + 1``.
        name (str|None): Name for this layer. Please refer to :ref:`api_guide_Name`, Default None.
632 633

    Returns:
634
        Tensor: Unsqueezed Tensor with the same data type as input Tensor.
635 636 637

    Examples:
        .. code-block:: python
638

639 640
            import paddle

641
            paddle.disable_static()
642 643 644 645 646 647 648 649
            x = paddle.rand([5, 10])
            print(x.shape)  # [5, 10]
            
            out1 = paddle.unsqueeze(x, axis=0)
            print(out1.shape)  # [1, 5, 10]
            
            out2 = paddle.unsqueeze(x, axis=[0, 2]) 
            print(out2.shape)  # [1, 5, 1, 10]
650

651 652 653 654
            axis = paddle.fluid.dygraph.to_variable([0, 1, 2])
            out3 = paddle.unsqueeze(x, axis=axis) 
            print(out3.shape)  # [1, 1, 1, 5, 10]
            
655
    """
656 657
    if isinstance(axis, int):
        axis = [axis]
658

659
    return layers.unsqueeze(x, axis, name)
660 661 662 663


def gather(input, index, overwrite=True):
    """
664 665
	:alias_main: paddle.gather
	:alias: paddle.gather,paddle.tensor.gather,paddle.tensor.manipulation.gather
S
swtkiwi 已提交
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    **Gather Layer**

    Output is obtained by gathering entries of the outer-most dimension
    of X indexed by `index` and concatenate them together.

    .. math::

        Out = X[Index]


    .. code-block:: text


                Given:

                X = [[1, 2],
                     [3, 4],
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]
    Args:
        input (Variable): The source input tensor with rank>=1. Supported data type is
            int32, int64, float32, float64 and uint8 (only for CPU),
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
            if False, use the accumulate mode to update the grad of the same index.
            Default value is True.



    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid


            with fluid.dygraph.guard():
                input_1 = np.array([[1,2],[3,4],[5,6]])
                index_1 = np.array([0,1])
                input = fluid.dygraph.to_variable(input_1)
                index = fluid.dygraph.to_variable(index_1)
                output = paddle.gather(input, index)
                # expected output: [[1,2],[3,4]]
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
    return out
myq406450149's avatar
myq406450149 已提交
734 735 736 737


def unbind(input, axis=0):
    """
738 739
	:alias_main: paddle.tensor.unbind
	:alias: paddle.tensor.unbind,paddle.tensor.manipulation.unbind
S
swtkiwi 已提交
740

myq406450149's avatar
myq406450149 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
       
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
    check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'],
                'unbind')
    if not isinstance(axis, (int)):
        raise TypeError("The type of 'axis'  must be int, but received %s." %
                        (type(axis)))
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis})
    return outs
L
lilong12 已提交
791 792


793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
def chunk(x, chunks, axis=0, name=None):
    """
    Split the input tensor into multiple sub-Tensors.
    
    Args:
        x (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
        chunks(int): The number of tensor to be split along the certain axis.
        axis (int|Tensor, optional): The axis along which to split, it can be a scalar with type 
            ``int`` or a ``Tensor`` with shape [1] and data type  ``int32`` or ``int64``.
            If :math::`axis < 0`, the axis to split along is :math:`rank(x) + axis`. Default is 0.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    Returns:
        list(Tensor): The list of segmented Tensors.
    Raises:
        TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64.
        TypeError: ``chunks`` is not int.
        TypeError: ``axis`` is not int or Tensor. the data type of ``axis`` must be int32 or int64 when it's a Tensor.
    Example:
        .. code-block:: python
            
            import numpy as np
            import paddle
            
            paddle.disable_static()
            # x is a Tensor which shape is [3, 9, 5]
            x_np = np.random.random([3, 9, 5]).astype("int32")
            x = paddle.to_variable(x_np)

            out0, out1, out22 = paddle.chunk(x, chunks=3, axis=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            
            # axis is negative, the real axis is (rank(x) + axis) which real
            # value is 1.
            out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
    """
    check_type(chunks, 'chunks', (int), 'chunk')
    return paddle.fluid.layers.split(
        input=x, num_or_sections=chunks, dim=axis, name=name)


L
lilong12 已提交
840 841
def tile(x, repeat_times, name=None):
    """
L
lilong12 已提交
842 843 844 845 846 847

    Construct a new Tensor by repeating ``x`` the number of times given by ``repeat_times``.
    After tiling, the number of elements of the i'th dimension of the output is equal to ``x.dims[i] * repeat_times[i]``.

    Both the number of dimensions of ``x`` and the number of elements in ``repeat_times`` should be less than or equal to 6.

L
lilong12 已提交
848
    Args:
L
lilong12 已提交
849 850 851 852 853
        x (Tensor): The input tensor, its data type should be bool, float32, float64, int32 or int64.
        repeat_times (Tensor|tuple|list): The number of repeating times. If repeat_times is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

L
lilong12 已提交
854
    Returns:
L
lilong12 已提交
855 856
        N-D Tensor. The data type is the same as ``x``.

L
lilong12 已提交
857 858
    Examples:
        .. code-block:: python
L
lilong12 已提交
859

L
lilong12 已提交
860 861
            import paddle
            import numpy as np
L
lilong12 已提交
862

L
lilong12 已提交
863
            paddle.disable_static()
L
lilong12 已提交
864 865 866 867
            np_data = np.array([1, 2, 3]).astype('int32')
            data = paddle.to_variable(np_data)
            out = paddle.tile(data, repeat_times=[2, 1])
			np_out = out1.numpy()
L
lilong12 已提交
868
            # [[1, 2, 3], [1, 2, 3]]
L
lilong12 已提交
869 870 871 872 873

            out = paddle.tile(data, repeat_times=[2, 2])
			np_out = out.numpy()
            # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]

L
lilong12 已提交
874 875
            np_repeat_times = np.array([2, 1]).astype("int32")
            repeat_times = paddle.to_variable(np_repeat_times)
L
lilong12 已提交
876 877
            out = paddle.tile(data, repeat_times=repeat_times)
			np_out = out.numpy()
L
lilong12 已提交
878 879 880 881 882
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'tile')
    check_type(repeat_times, 'repeat_times', (list, tuple, Variable), 'tile')
L
lilong12 已提交
883
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
L
lilong12 已提交
884 885
        raise ValueError(
            "When the date type is bool for the input 'x' of tile op, you "
L
lilong12 已提交
886 887
            "must set its stop_gradient to be True by "
            "some_var.stop_gradient == True supporting some_var as the input.")
L
lilong12 已提交
888 889 890

    helper = LayerHelper('tile', input=x, **locals())

L
lilong12 已提交
891 892 893
    inputs = {"X": [x]}
    attrs = {}

L
lilong12 已提交
894 895 896 897 898 899 900 901
    def get_attr_repeat_times(list_repeat_times):
        attrs_repeat_times = []
        for idx, times in enumerate(list_repeat_times):
            if isinstance(times, Variable):
                attrs_repeat_times.append(-1)
            else:
                attrs_repeat_times.append(times)
                assert times > 0, (
L
lilong12 已提交
902
                    "All elements in repeat_times must be positive for tile.")
L
lilong12 已提交
903 904 905 906 907
        return attrs_repeat_times

    if isinstance(repeat_times, Variable):
        repeat_times.stop_gradient = True
        inputs['RepeatTimes'] = repeat_times
L
lilong12 已提交
908
        attrs['repeat_times'] = [-1]
L
lilong12 已提交
909 910 911 912 913 914 915 916 917 918 919
    elif isinstance(repeat_times, (list, tuple)):
        attrs['repeat_times'] = get_attr_repeat_times(repeat_times)
        if utils._contain_var(repeat_times):
            inputs['repeat_times_tensor'] = utils._convert_to_tensor_list(
                repeat_times)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='tile', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
920 921


L
lilong12 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
def expand_as(x, y, name=None):
    """

    Expand the input tensor ``x`` to the same shape as the input tensor ``y``.

    Both the number of dimensions of ``x`` and ``y`` must be less than or equal to 6, and the number of dimensions of ``y`` must be greather than or equal to that of ``x``. The dimension to expand must have a value of 1.

    Args:
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        y (Tensor): The input tensor gives the shape that ``x`` to expand to.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor: A Tensor with the same shape as ``y``. The data type is the same as ``x``.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()

            np_data_x = np.array([1, 2, 3]).astype=('int32)
            np_data_y = np.array([[1, 2, 3], [4, 5, 6]]).astype=('int32)
            data_x = paddle.to_variable(np_data_x)
            data_y = paddle.to_variable(np_data_y)
            out = paddle.expand_as(data_x, data_y)
			np_out = out.numpy()
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand_as')
    check_type(y, 'y', Variable, 'expand_as')

    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
        raise ValueError(
            "When the data type of input 'x' for expand_as is bool, "
            "you must set its stop_gradient to be False by "
            "some_var.stop_gradient = True, supporting "
            "some_var as the input 'x'.")
    inputs = {"X": [x], "target_tensor": [y]}

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type='expand_as_v2', inputs=inputs, outputs={'Out': out})
    return out


972 973 974 975 976
def expand(x, shape, name=None):
    """

    Expand the input tensor to a given shape.

L
lilong12 已提交
977
    Both the number of dimensions of ``x`` and the number of elements in ``shape`` should be less than or equal to 6. The dimension to expand must have a value 1.
978 979 980


    Args:
L
lilong12 已提交
981 982 983 984
        x (Tensor): The input tensor, its data type is bool, float32, float64, int32 or int64.
        shape (list|tuple|Tensor): The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements
            should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. 
            The value -1 in shape means keeping the corresponding dimension unchanged.
985 986 987
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .

    Returns:
L
lilong12 已提交
988
        N-D Tensor: A Tensor with the given shape. The data type is the same as ``x``.
989 990 991 992 993 994 995

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

L
lilong12 已提交
996 997 998 999 1000
            paddle.disable_static()
            np_data = np.array([1, 2, 3]).astype=('int32)
            data = paddle.to_variable(np_data)
            out = paddle.expand(data, shape=[2, 3])
			out = out.numpy()
1001 1002 1003 1004
            # [[1, 2, 3], [1, 2, 3]]

            np_shape = np.array([2, 3]).astype=('int32)
            shape = paddle.to_variable(np_shape)
L
lilong12 已提交
1005 1006
            out = paddle.expand(data, shape=shape)
			out = out.numpy
1007 1008 1009 1010 1011
            # [[1, 2, 3], [1, 2, 3]]
    """
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
    check_type(shape, 'shape', (list, tuple, Variable), 'expand')
L
lilong12 已提交
1012 1013 1014 1015

    inputs = {"X": [x]}
    attrs = {}
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == False:
1016 1017
        raise ValueError("When the data type of input 'x' for expand is bool, "
                         "you must set its stop_gradient to be False by "
L
lilong12 已提交
1018
                         "some_var.stop_gradient = True, supporting "
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                         "some_var as the input.")

    helper = LayerHelper('expand', input=x, **locals())

    def get_attr_expand_shape(list_expand_shape):
        attrs_expand_shape = []
        for idx, shape in enumerate(list_expand_shape):
            if isinstance(shape, Variable):
                attrs_expand_shape.append(-1)
            else:
                attrs_expand_shape.append(shape)
                assert shape > 0 or shape == -1, (
L
lilong12 已提交
1031
                    "All elements in shape of expand must be positive or -1.")
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
        return attrs_expand_shape

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs['Shape'] = shape
    elif isinstance(shape, (list, tuple)):
        attrs['shape'] = get_attr_expand_shape(shape)
        if utils._contain_var(shape):
            inputs['expand_shapes_tensor'] = utils._convert_to_tensor_list(
                shape)

    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='expand_v2', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
lilong12 已提交
1048 1049 1050


broadcast_to = expand