c_allgather_op.cc 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/collective/c_allgather_op.h"
16

17 18 19 20 21 22 23 24 25
#include <memory>

namespace paddle {
namespace operators {

class CAllGatherOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
M
MRXLT 已提交
26 27
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AllGather");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Input", "Out", "AllGather");
28
    int nranks = ctx->Attrs().Get<int>("nranks");
M
MRXLT 已提交
29 30
    PADDLE_ENFORCE_GE(nranks, 2, platform::errors::InvalidArgument(
                                     "The value of nranks should be >=2."));
31 32
    framework::DDim dim = ctx->GetInputDim("X");
    dim[0] = dim[0] * nranks;
33
    if (dim[0] < 0) dim[0] = -1;
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    ctx->SetOutputDim("Out", dim);
  }
};

class CAllGatherOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor) tensor to be allgather");
    AddOutput("Out", "(Tensor) the allgather result");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
    AddAttr<int>("nranks",
                 "Total trainer count of the distributed training job");
    AddComment(R"DOC(
52
CAllGather Operator
53 54
each rank receives the aggregation of data from all ranks in the order of the ranks

55
reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allgather
56 57 58 59
)DOC");
  }
};

H
hong 已提交
60 61
template <typename T>
class CAllGatherOpGradMaker : public framework::SingleGradOpMaker<T> {
62
 public:
H
hong 已提交
63
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
64 65

 protected:
66
  void Apply(GradOpPtr<T> retv) const override {
67
    retv->SetType("c_reducescatter");
H
hong 已提交
68 69 70
    retv->SetInput("X", this->OutputGrad("Out"));
    retv->SetOutput("Out", this->InputGrad("X"));
    retv->SetAttrMap(this->Attrs());
71 72 73 74 75 76 77 78 79
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

H
hong 已提交
80 81 82
REGISTER_OPERATOR(c_allgather, ops::CAllGatherOp,
                  ops::CAllGatherOpGradMaker<paddle::framework::OpDesc>,
                  ops::CAllGatherOpGradMaker<paddle::imperative::OpBase>,
83 84
                  ops::CAllGatherOpMaker);

85 86 87 88 89
REGISTER_OP_CPU_KERNEL(c_allgather, ops::CAllGatherOpCPUKernel<float>,
                       ops::CAllGatherOpCPUKernel<double>,
                       ops::CAllGatherOpCPUKernel<int>,
                       ops::CAllGatherOpCPUKernel<int64_t>,
                       ops::CAllGatherOpCPUKernel<plat::float16>);