test_dataset_dataloader.py 7.5 KB
Newer Older
Z
Zeng Jinle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
Z
Zeng Jinle 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
import paddle.fluid as fluid
import numpy as np
import six
import os
import unittest
from simple_nets import simple_fc_net_with_inputs

BATCH_SIZE = 32
BATCH_NUM = 10
EPOCH_NUM = 4

IMAGE_SHAPE = [2, 3]
LABEL_SHAPE = [1]

ALL_WRITTEN_FILES = set()


def get_place_string(p):
    if isinstance(p, (fluid.CPUPlace or fluid.CUDAPlace)):
        tmp = fluid.core.Place()
        tmp.set_place(p)
        p = tmp

    if p._type() == fluid.CPUPlace()._type():
        return 'CPUPlace()'
    else:
        return 'CUDAPlace()'


def remove_all_written_files():
    for filename in ALL_WRITTEN_FILES:
        os.remove(filename)


def write_reader_data_to_file(filename, reader):
    ALL_WRITTEN_FILES.add(filename)
    with open(filename, 'w') as fid:
        for instance_list in reader():
            for i, instance in enumerate(instance_list):
                instance = np.reshape(instance, [instance.size, ])
                fid.write(str(instance.size) + ' ')
                fid.write(' '.join(map(str, instance)))
                fid.write(' ')

            fid.write('\n')


def fake_reader(batch_size=BATCH_SIZE, batch_num=BATCH_NUM):
    def __reader__():
        iteration = BATCH_SIZE * BATCH_NUM
        iteration = int(iteration + BATCH_SIZE / 2)
        for _ in six.moves.range(iteration):
            image = np.random.random(size=IMAGE_SHAPE).astype('float32')
            label = np.random.random_integers(
                size=LABEL_SHAPE, low=0, high=9).astype('int64')
            yield image, label

    return __reader__


class DatasetLoaderTestBase(unittest.TestCase):
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = False

    def tearDown(self):
        return
        remove_all_written_files()

    def build_network(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            image = fluid.layers.data(
                name='image', shape=IMAGE_SHAPE, dtype='float32')
            label = fluid.layers.data(
                name='label', shape=LABEL_SHAPE, dtype='int64')

            simple_fc_net_with_inputs(image, label)

        return main_prog, startup_prog, [image, label]

    def check_batch_number(self, place, randomize_batch_num=False):
        main_prog, startup_prog, feeds = self.build_network()
100 101
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            self.dataset_name)
Z
Zeng Jinle 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        dataset.set_batch_size(BATCH_SIZE)

        if isinstance(place, fluid.CPUPlace):
            file_num = 10
            os.environ['CPU_NUM'] = str(file_num)
            places = fluid.cpu_places()
            use_cuda = False
        else:
            file_num = fluid.core.get_cuda_device_count()
            places = fluid.cuda_places()
            use_cuda = True

        filelist = []
        if file_num > 1 and randomize_batch_num:
            random_delta_batch_size = np.random.random_integers(
                low=-BATCH_NUM / 2, high=BATCH_NUM / 2, size=[file_num])
            random_delta_batch_size[-1] = -int(
                np.sum(random_delta_batch_size[0:-1]))
        else:
            random_delta_batch_size = np.zeros(shape=[file_num])

        for i in six.moves.range(file_num):
            filename = 'dataset_test_{}.txt'.format(i)
            filelist.append(filename)
            write_reader_data_to_file(
                filename,
                fake_reader(batch_num=BATCH_NUM + random_delta_batch_size[i]))

        dataset.set_filelist(filelist)
        dataset.set_use_var(feeds)
        dataset.set_pipe_command("cat")
        if self.dataset_name == 'InMemoryDataset':
            dataset.load_into_memory()

        dataloader = fluid.io.DataLoader.from_dataset(
            dataset=dataset, places=places, drop_last=self.drop_last)
        prog = fluid.CompiledProgram(main_prog).with_data_parallel()
        exe = fluid.Executor(place)

        exe.run(startup_prog)

        for _ in six.moves.range(EPOCH_NUM):
            has_complete_batch = False
            for batch_id, data in enumerate(dataloader):
                self.assertEquals(len(places), len(data))
                for idx, data_on_each_device in enumerate(data):
                    image = data_on_each_device["image"]
                    label = data_on_each_device["label"]

                    if self.drop_last:
                        batch_size = BATCH_SIZE
                    else:
                        if batch_id == BATCH_NUM:
                            batch_size = BATCH_SIZE / 2
                        else:
                            batch_size = BATCH_SIZE

                    self.assertEquals(image.shape()[1:], IMAGE_SHAPE)
                    self.assertTrue(
                        image._place()._equals(places[idx]),
                        msg=get_place_string(image._place()) + ' vs ' +
                        get_place_string(places[idx]))
                    if self.drop_last:
                        self.assertEquals(image.shape()[0], BATCH_SIZE)
                    else:
                        self.assertTrue(image.shape()[0] == BATCH_SIZE or
                                        image.shape()[0] == BATCH_SIZE / 2)

                    self.assertEquals(label.shape()[1:], LABEL_SHAPE)
                    self.assertTrue(label._place()._equals(places[idx]))
                    if self.drop_last:
                        self.assertEquals(label.shape()[0], BATCH_SIZE)
                    else:
                        self.assertTrue(label.shape()[0] == BATCH_SIZE or
                                        label.shape()[0] == BATCH_SIZE / 2)

                    self.assertEquals(image.shape()[0], label.shape()[0])

                    if image.shape()[0] == BATCH_SIZE:
                        has_complete_batch = True

                exe.run(prog, feed=data)

            self.assertTrue(has_complete_batch)

    def get_all_places(self):
        p = [fluid.CPUPlace()]
        if fluid.is_compiled_with_cuda():
            p.append(fluid.CUDAPlace(0))
        return p

    def test_batch_number_with_same_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=False)

    def test_batch_number_with_different_length_files(self):
        for p in self.get_all_places():
            with fluid.scope_guard(fluid.Scope()):
                self.check_batch_number(place=p, randomize_batch_num=True)


class QueueDatasetTestWithoutDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "QueueDataset"
        self.drop_last = True


class InMemoryDatasetTestWithoutDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = False


class InMemoryDatasetTestWithDropLast(DatasetLoaderTestBase):
    def setUp(self):
        self.dataset_name = "InMemoryDataset"
        self.drop_last = True


if __name__ == '__main__':
    unittest.main()