layer_norm_op.cu 21.0 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <cub/cub.cuh>
P
Pei Yang 已提交
16 17 18
#include <memory>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/layer_norm_op.h"
C
chengduoZH 已提交
20

S
sneaxiy 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
namespace paddle {
namespace operators {

inline static int GetDesiredBlockDim(int block_dim) {
  const int kMaxBlockDim = 512;
  return block_dim >= kMaxBlockDim
             ? kMaxBlockDim
             : (1 << (static_cast<int>(std::log2f(block_dim))));
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

48 49 50
static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
static __device__ __forceinline__ double real_sqrt(double x) { return sqrt(x); }

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

S
sneaxiy 已提交
69 70 71 72
template <typename T, int BlockDim>
__global__ void LayerNormForward(const T *x, const T *scale, const T *bias,
                                 T *y, T *mean, T *var, float epsilon,
                                 int feature_size) {
Y
Yu Yang 已提交
73
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<double>, BlockDim>;
S
sneaxiy 已提交
74 75 76 77 78
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

79
  // Step 1: Reduce to calculate mean and var
Y
Yu Yang 已提交
80 81
  double mean_val = 0;
  double var_val = 0;
S
sneaxiy 已提交
82
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
83 84
    T tmp = x[i];
    mean_val += tmp;
S
sneaxiy 已提交
85 86
    var_val += (tmp * tmp);
  }
87
  auto pair = BlockReduce(temp_storage)
Y
Yu Yang 已提交
88 89
                  .Reduce(PairForLayerNorm<double>(mean_val, var_val),
                          PairForLayerNormAddFunctor<double>());
90 91
  if (threadIdx.x == 0) {
    auto tmp = pair.first_ / feature_size;
Y
Yu Yang 已提交
92 93
    mean[blockIdx.x] = static_cast<T>(tmp);
    var[blockIdx.x] = static_cast<T>(pair.second_ / feature_size - tmp * tmp);
94
  }
S
sneaxiy 已提交
95
  __syncthreads();
96
  mean_val = mean[blockIdx.x];
97
  var_val = static_cast<T>(real_sqrt(var[blockIdx.x] + epsilon));
S
sneaxiy 已提交
98

99
  // Step 2: Calculate y
S
sneaxiy 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val;
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val;
      }
    }
  }
}

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
template <typename T, int BlockDim, bool HasDx>
__global__ void LayerNormBackwardGradientAll(const T *x, const T *d_y,
                                             T *d_scale, T *d_bias, T *d_x,
                                             const T *mean, const T *var,
                                             const T *scale, float epsilon,
                                             int batch_size, int feature_size) {
135
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<T>, BlockDim>;
S
sneaxiy 已提交
136 137 138 139 140
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
141

S
sneaxiy 已提交
142 143 144 145
  T d_scale_partial = 0, d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
146
    auto var_val = static_cast<T>(real_sqrt(var[row_idx] + epsilon));
S
sneaxiy 已提交
147 148
    d_scale_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    d_bias_partial += d_y[i];
149 150 151
    if (HasDx) {
      d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
    }
S
sneaxiy 已提交
152 153
  }

154 155 156
  auto pair = BlockReduce(temp_storage)
                  .Reduce(PairForLayerNorm<T>(d_scale_partial, d_bias_partial),
                          PairForLayerNormAddFunctor<T>());
S
sneaxiy 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

  if (threadIdx.x == 0) {
    d_scale[blockIdx.x] = pair.first_;
    d_bias[blockIdx.x] = pair.second_;
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
template <typename T, int BlockDim, bool HasDx, bool HasDScale>
__global__ void LayerNormBackwardGradientScaleOrBias(
    const T *x, const T *d_y, T *d_scale, T *d_bias, T *d_x, const T *mean,
    const T *var, const T *scale, float epsilon, int batch_size,
    int feature_size) {
  using BlockReduce = cub::BlockReduce<T, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
  T d_scale_or_d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
181
    auto var_val = static_cast<T>(real_sqrt(var[row_idx] + epsilon));
S
sneaxiy 已提交
182 183 184 185 186 187 188
    if (HasDScale) {
      d_scale_or_d_bias_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += d_y[i];
    }

    if (HasDx) {
189
      if (scale != nullptr) {
S
sneaxiy 已提交
190
        d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
191
      } else {
S
sneaxiy 已提交
192
        d_x[i] = d_y[i] / var_val;
193
      }
S
sneaxiy 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
      d_scale[blockIdx.x] = d_scale_or_d_bias_partial;
    } else {
      d_bias[blockIdx.x] = d_scale_or_d_bias_partial;
    }
  }
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
template <typename T, int BlockDim>
__global__ void LayerNormBackwardPostProcessToCalculateDX(const T *x, T *d_x,
                                                          const T *mean,
                                                          const T *var,
                                                          float epsilon,
                                                          int feature_size) {
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<T>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T d_x_reduce_tmp[2];

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

  T block_mean = mean[blockIdx.x];
  T block_var = var[blockIdx.x];
  T d_x_mean_partial = 0, d_x_var_partial = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    d_x_mean_partial += d_x[i];
    d_x_var_partial += d_x[i] * (x[i] - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<T>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<T>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = pair.first_ / feature_size;
    d_x_reduce_tmp[1] = pair.second_ / (feature_size * (block_var + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= d_x_mean_partial;
    d_x[i] -= (x[i] - block_mean) * d_x_var_partial;
  }
}

S
sneaxiy 已提交
249
// Here, we only calculate d_x
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
template <typename T, int BlockDim>
__global__ void LayerNormBackwardGradientOnlyDX(const T *x, const T *d_y,
                                                T *d_x, const T *mean,
                                                const T *var, const T *scale,
                                                float epsilon,
                                                int feature_size) {
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<T>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  __shared__ T d_x_reduce_tmp[2];

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

  T block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  T d_x_mean_partial = 0, d_x_var_partial = 0;
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    auto var_val = static_cast<T>(real_sqrt(block_var + epsilon));
S
sneaxiy 已提交
267
    if (scale != nullptr) {
268 269
      int col_idx = i % feature_size;
      d_x[i] = d_y[i] * scale[col_idx] / var_val;
S
sneaxiy 已提交
270
    } else {
271
      d_x[i] = d_y[i] / var_val;
S
sneaxiy 已提交
272
    }
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    d_x_mean_partial += d_x[i];
    d_x_var_partial += d_x[i] * (x[i] - block_mean);
  }

  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNorm<T>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<T>());

  if (threadIdx.x == 0) {
    d_x_reduce_tmp[0] = pair.first_ / feature_size;
    d_x_reduce_tmp[1] = pair.second_ / (feature_size * (block_var + epsilon));
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    d_x[i] -= d_x_mean_partial;
    d_x[i] -= (x[i] - block_mean) * d_x_var_partial;
S
sneaxiy 已提交
293 294 295 296 297 298 299 300 301
  }
}

template <typename T>
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
    const T *x, const T *d_y, T *d_x, T *d_scale, T *d_bias, const T *mean,
    const T *var, const T *scale, float epsilon, int feature_size) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < feature_size) {
302
    auto var_val = static_cast<T>(real_sqrt(var[idx] + epsilon));
S
sneaxiy 已提交
303
    if (d_x != nullptr) {
304
      if (d_scale == nullptr) {
S
sneaxiy 已提交
305
        d_x[idx] = d_y[idx] / var_val;
306
      } else {
S
sneaxiy 已提交
307
        d_x[idx] = d_y[idx] * scale[idx] / var_val;
308
      }
S
sneaxiy 已提交
309
    }
310 311

    if (d_scale != nullptr) {
S
sneaxiy 已提交
312
      d_scale[idx] = d_y[idx] * (x[idx] - mean[idx]) / var_val;
313 314
    }

S
sneaxiy 已提交
315 316 317 318 319 320 321 322 323 324
    if (d_bias != nullptr) d_bias[idx] = d_y[idx];
  }
}

template <typename T>
static void LayerNormBackward(const T *x, const T *d_y, const T *scale,
                              const T *mean, const T *var, T *d_x, T *d_scale,
                              T *d_bias, float epsilon, int batch_size,
                              int feature_size, cudaStream_t stream) {
  const int kMaxBlockDim = 512;
325 326 327
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
S
sneaxiy 已提交
328 329 330 331 332 333 334
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
    LayerNormBackwardWhenBatchSizeIsOne<
        T><<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim, 0,
             stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale, epsilon,
                       feature_size);
335 336 337 338 339 340 341 342

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardPostProcessToCalculateDX<
                             T, kBlockDim><<<1, kBlockDim, 0, stream>>>(
            x, d_x, mean, var, epsilon, feature_size));
      }
    }
S
sneaxiy 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, false><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
376 377 378 379 380 381
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientOnlyDX<
                T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
S
sneaxiy 已提交
382 383 384 385 386 387 388 389 390
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
391 392 393 394 395 396
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
                T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
397 398 399 400 401 402 403 404 405
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
406 407 408 409 410 411
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
                T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
412 413 414 415 416 417 418 419 420
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, true><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
421 422 423 424 425 426
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
                T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
427 428 429 430 431 432
      break;
    default:
      break;
  }
}

P
Pei Yang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
template <typename T>
void LayerNormDirectCUDAFunctor<T>::operator()(cudaStream_t stream,
                                               const T *input,
                                               std::vector<int> input_shape,
                                               const T *bias, const T *scale,
                                               T *output, T *mean, T *variance,
                                               int begin_norm_axis, float eps) {
  const auto x_dims = framework::make_ddim(input_shape);
  auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
  int batch_size = static_cast<int>(matrix_dim[0]);
  int feature_size = static_cast<int>(matrix_dim[1]);
  switch (GetDesiredBlockDim(feature_size)) {
    FIXED_BLOCK_DIM_CASE(
        LayerNormForward<T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
            input, scale, bias, output, mean, variance, eps, feature_size));
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Product from begin_norm_axis to end in layer_norm must be larger "
          "than 1"));
      break;
  }
}

S
sneaxiy 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
template <typename T>
class LayerNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto *x = ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto x_dims = x->dims();
    auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    auto *mean_data = mean->mutable_data<T>(ctx.GetPlace());
    auto *var_data = var->mutable_data<T>(ctx.GetPlace());
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *bias_data = (bias == nullptr ? nullptr : bias->data<T>());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    switch (GetDesiredBlockDim(feature_size)) {
      FIXED_BLOCK_DIM_CASE(
          LayerNormForward<T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
              x_data, scale_data, bias_data, y_data, mean_data, var_data,
              epsilon, feature_size));
      default:
        PADDLE_THROW(
            "Product from begin_norm_axis to end must be larger than 1");
        break;
    }
  }
};

template <typename T>
class LayerNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    // d_x, d_scale, d_bias may be nullptr
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto *x = ctx.Input<Tensor>("X");
    auto *mean = ctx.Input<Tensor>("Mean");
    auto *var = ctx.Input<Tensor>("Variance");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    auto *x_data = x->data<T>();
    auto *d_y_data = d_y->data<T>();
    auto *mean_data = mean->data<T>();
    auto *var_data = var->data<T>();
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *d_scale_data =
        (d_scale == nullptr ? nullptr
                            : d_scale->mutable_data<T>(ctx.GetPlace()));
    auto *d_bias_data =
        (d_bias == nullptr ? nullptr : d_bias->mutable_data<T>(ctx.GetPlace()));
    auto *d_x_data =
        (d_x == nullptr ? nullptr : d_x->mutable_data<T>(ctx.GetPlace()));

    const auto &x_dims = x->dims();
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    LayerNormBackward<T>(x_data, d_y_data, scale_data, mean_data, var_data,
                         d_x_data, d_scale_data, d_bias_data, epsilon,
                         batch_size, feature_size, stream);
  }
};
P
Pei Yang 已提交
541
template class LayerNormDirectCUDAFunctor<float>;
S
sneaxiy 已提交
542 543 544 545 546
#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
547 548 549
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
C
chengduoZH 已提交
550 551
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, double>);
C
chengduoZH 已提交
552 553
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
554 555
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, double>);