fleet.cc 30.1 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <google/protobuf/text_format.h>

17 18
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
#include "paddle/fluid/distributed/ps/table/table.h"
19
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
T
tangwei12 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace distributed {

using framework::LoDTensor;
using framework::ProgramDesc;
using framework::VarDesc;
using framework::Variable;

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
bool FleetWrapper::is_initialized_ = false;

std::shared_ptr<paddle::distributed::PSCore> FleetWrapper::pserver_ptr_ = NULL;
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
std::shared_ptr<paddle::distributed::PSClient> FleetWrapper::worker_ptr_ = NULL;

int FleetWrapper::RegisterHeterCallback(HeterCallBackFunc handler) {
  VLOG(0) << "RegisterHeterCallback support later";
  return 0;
}

int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
  VLOG(0) << "CopyTable support later";
  return 0;
}

int32_t FleetWrapper::CopyTableByFeasign(
    const uint64_t src_table_id, const uint64_t dest_table_id,
    const std::vector<uint64_t>& feasign_list) {
  VLOG(0) << "CopyTableByFeasign support later";
  return 0;
}
T
tangwei12 已提交
53

Y
yaoxuefeng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
void FleetWrapper::Stop() { StopServer(); }

void FleetWrapper::Load(WrapperContext& context) {
  auto table_id = context.table_id;
  if (table_id >= 0 && context.meta != "") {
    LoadSparseOnServer(context.path, context.meta, context.table_id);
    return;
  }
  if (table_id < 0) {  // laod all
    LoadModel(context.path, context.mode);
  } else {  // load one table
    LoadModelOneTable(table_id, context.path, context.mode);
  }
  return;
}

void FleetWrapper::Save(WrapperContext& context) {
  auto table_id = context.table_id;
  if (table_id < 0) {
    SaveModel(context.path, context.mode);
  } else {
    SaveModelOneTable(table_id, context.path, context.mode);
  }
  return;
}

T
tangwei12 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

void FleetWrapper::LoadSparseOnServer(const std::string& path,
                                      const std::string& meta,
                                      uint32_t table_id) {
  VLOG(3) << "load sparse table " << table_id << " with " << path << " meta "
          << meta;
  pserver_ptr_->_server_ptr->table(table_id)->load(path, meta);
}

96 97
void FleetWrapper::InitServer(
    const std::string& dist_desc,
T
tangwei12 已提交
98
    const std::vector<std::string>& host_sign_list, int index, int trainers,
99
    const std::vector<framework::ProgramDesc>& server_sub_program) {
T
tangwei12 已提交
100 101 102 103 104
  if (!is_initialized_) {
    VLOG(3) << "Going to init server";
    pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
        new paddle::distributed::PSCore());
    pserver_ptr_->init_server(dist_desc, &host_sign_list, host_sign_list.size(),
T
tangwei12 已提交
105
                              index, trainers, server_sub_program);
T
tangwei12 已提交
106 107 108 109 110 111
    is_initialized_ = true;
  } else {
    VLOG(3) << "Server can be initialized only once";
  }
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
void FleetWrapper::InitGFlag(const std::string& gflags) {
  VLOG(3) << "Init With Gflags:" << gflags;
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char* flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
    flags_ptr[i] = (char*)(flags[i].c_str());  // NOLINT
  }
  int params_cnt = flags.size();
  char** params_ptr = &(flags_ptr[0]);
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
}
T
tangwei12 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<std::string>& host_sign_list,
                              int index) {
  if (!is_initialized_) {
    // not used, just for psclient's init
    // TODO(zhaocaibei123): remove this later
    std::map<uint64_t, std::vector<paddle::distributed::Region>>
        dense_pull_regions;

    if (worker_ptr_.get() == nullptr) {
      paddle::distributed::PSParameter ps_param;
      google::protobuf::TextFormat::ParseFromString(dist_desc, &ps_param);
      InitGFlag(ps_param.init_gflags());
      int servers = host_sign_list.size();
      ps_env_.set_ps_servers(&host_sign_list, servers);
      worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
          paddle::distributed::PSClientFactory::create(ps_param));
      worker_ptr_->configure(ps_param, dense_pull_regions, ps_env_, index);
    }
T
tangwei12 已提交
151
  } else {
152
    VLOG(3) << "Client can be initialized only once";
T
tangwei12 已提交
153 154 155 156 157
  }
}

void FleetWrapper::StopServer() {
  VLOG(3) << "Going to stop server";
158
  auto status = worker_ptr_->stop_server();
T
tangwei12 已提交
159 160 161 162 163
  status.wait();
}

void FleetWrapper::FinalizeWorker() {
  VLOG(3) << "Going to finalize worker";
164
  worker_ptr_->finalize_worker();
T
tangwei12 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
}

void FleetWrapper::BarrierWithTable(uint32_t barrier_type) {
  VLOG(3) << "Going to Barrier worker";
  auto* communicator = Communicator::GetInstance();
  communicator->BarrierWithTable(barrier_type);
}

uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
  auto ret = pserver_ptr_->run_server(ip, port);
  return ret;
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
  VLOG(3) << "Going to get client info";
181 182 183 184
  std::vector<uint64_t> res = ps_env_.get_client_info();
  for (auto rr : res) {
    VLOG(2) << "FleetWrapper::GetClientInfo " << rr;
  }
Z
zhaocaibei123 已提交
185
  return res;
T
tangwei12 已提交
186 187
}

188 189 190 191 192
int FleetWrapper::SetClients(std::vector<uint64_t>& host_sign_list) {
  int node = host_sign_list.size();
  return ps_env_.set_ps_clients(host_sign_list.data(), node);
}

T
tangwei12 已提交
193
void FleetWrapper::CreateClient2ClientConnection() {
Z
zhaocaibei123 已提交
194
  VLOG(1) << "Going to create client2client connection";
195
  worker_ptr_->create_client2client_connection(
T
tangwei12 已提交
196 197 198 199
      client2client_request_timeout_ms_, client2client_connect_timeout_ms_,
      client2client_max_retry_);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }

  bool training = true;
  return pserver_ptr_->_worker_ptr->pull_sparse(pull_result_ptr.data(),
                                                table_id, fea_keys->data(),
                                                fea_keys->size(), training);
}

T
tangwei12 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim,
    const std::vector<std::string>& var_emb_names) {
  std::vector<std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
281
  bool training = true;
T
tangwei12 已提交
282
  auto status = pserver_ptr_->_worker_ptr->pull_sparse(
283 284
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size(),
      training);
T
tangwei12 已提交
285 286 287 288 289 290 291 292 293 294 295 296
  pull_sparse_status.push_back(std::move(status));
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    }
  }
}

297 298 299
// is_training is true means training, false means inference, the behavior is
// different on pserver

T
tangwei12 已提交
300 301 302
void FleetWrapper::PullSparseToTensorSync(const uint64_t table_id, int fea_dim,
                                          uint64_t padding_id,
                                          platform::Place place,
303
                                          bool is_training,
T
tangwei12 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                                          std::vector<const LoDTensor*>* inputs,
                                          std::vector<LoDTensor*>* outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float*> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor* output = nullptr;
  float* output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  // ps client pull sparse
  // construct client request context
  RequestContext req_context;
  req_context.value_type = Sparse;
  req_context.training_mode = Async;
  req_context.table = table_id;
  req_context.sparse_values = pull_result_ptr.data();
  req_context.keys = fea_keys.data();
  req_context.num = fea_keys.size();
  req_context.is_training = is_training;
  auto status = worker_ptr_->Pull(req_context);
  // auto status =
  //     worker_ptr_->pull_sparse(pull_result_ptr.data(), table_id,
  //                              fea_keys.data(), fea_keys.size(),
  //                              is_training);
T
tangwei12 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<std::future<int32_t>>* pull_dense_status, bool in_cpu) {
  auto& regions = _regions[tid];
  regions.clear();
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    std::string varname = var_names[i];
    if (!in_cpu) {
      varname = var_names[i] + "pin";
    }
    Variable* var = scope.FindVar(varname);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::distributed::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
381 382 383 384 385 386 387 388
  RequestContext req_context;
  req_context.value_type = Dense;
  req_context.training_mode = Async;
  req_context.table = tid;
  req_context.dense_values = regions.data();
  req_context.num = regions.size();
  auto status = worker_ptr_->Pull(req_context);
  // auto status = worker_ptr_->pull_dense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
389 390 391 392 393 394 395 396 397 398 399 400
  pull_dense_status->push_back(std::move(status));
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
  auto& regions = _regions[tid];
  regions.clear();
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
401 402 403 404 405
    if (!platform::is_gpu_place(tensor->place())) {
      float* w = tensor->data<float>();
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
406
  }
407
  auto status = worker_ptr_->pull_dense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
408 409 410 411 412 413 414 415 416 417 418 419
  status.wait();
}

void FleetWrapper::PushDenseParamSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
420 421 422 423 424
    if (!platform::is_gpu_place(tensor->place())) {
      float* g = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
425
  }
426 427
  auto push_status =
      worker_ptr_->push_dense_param(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
}

void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<std::future<int32_t>>* push_sparse_status, float scale_datanorm,
    int batch_size) {
Z
zhaocaibei123 已提交
442 443 444 445 446 447
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
448
    int count = tensor->numel();
Z
zhaocaibei123 已提交
449
    float* g = tensor->mutable_data<float>(place);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    // TODO(zhaocaibei123): how to get batch_size in op?
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }

Z
zhaocaibei123 已提交
466 467 468 469 470 471 472
    paddle::distributed::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
    VLOG(3) << "FleetWrapper::PushDenseVarsAsync Var " << t << " talbe_id "
            << table_id << " Temp_data[0] " << g[0] << " Temp_data[-1] "
            << g[tensor->numel() - 1];
  }

473 474 475 476 477 478 479 480 481
  RequestContext req_context;
  req_context.value_type = Dense;
  req_context.training_mode = Async;
  req_context.table = table_id;
  req_context.push_context.push_dense_values = regions.data();
  req_context.num = regions.size();
  // auto push_status =
  //     worker_ptr_->push_dense(regions.data(), regions.size(), table_id);
  auto push_status = worker_ptr_->Push(req_context);
T
tangwei12 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
}

void FleetWrapper::PushSparseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::string& grad_varname,
    std::vector<std::future<int32_t>>* push_sparse_status) {
  std::vector<std::string> varnames;
  varnames.push_back(grad_varname);

  auto* communicator = Communicator::GetInstance();
  PADDLE_ENFORCE_EQ(
      communicator->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  communicator->Send(varnames, scope);
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
    std::vector<std::future<int32_t>>* push_sparse_status, const int batch_size,
    const bool use_cvm, const bool dump_slot,
    std::vector<uint64_t>* sparse_push_keys, const bool no_cvm) {
  // not support
  return;
}

void FleetWrapper::PushSparseFromTensorWithLabelAsync(
    const Scope& scope, const uint64_t table_id, int fea_dim,
    uint64_t padding_id, bool scale_sparse, const std::string& accesor,
    const std::string& click_name, platform::Place place,
    const std::vector<std::string>& input_names,
    std::vector<const LoDTensor*>* inputs,
    std::vector<const LoDTensor*>* outputs) {
  // not support
  return;
}

Z
zhaocaibei123 已提交
523 524 525 526
void FleetWrapper::PushSparseFromTensorAsync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, std::vector<const LoDTensor*>* inputs,
    const LoDTensor* shows, const LoDTensor* clks,
527
    std::vector<LoDTensor*>* outputs, bool use_cvm_op) {
Z
zhaocaibei123 已提交
528
  int batch_size = -1;
Z
zhaocaibei123 已提交
529
  bool batch_size_consist = true;
Z
zhaocaibei123 已提交
530 531 532 533 534
  for (auto* input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
535
    } else if (batch_size != cur_batch_size) {
Z
zhaocaibei123 已提交
536 537 538
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
Z
zhaocaibei123 已提交
539 540 541 542 543 544 545 546 547 548 549
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

550
  CHECK(outputs->size() == inputs->size());
Z
zhaocaibei123 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim;

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t* show_tensor = shows->data<int64_t>();
  const int64_t* clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
567 568 569 570 571 572 573 574
    framework::LoDTensor* g_tensor = outputs->at(index);
    float* g = g_tensor->data<float>();
    // no cvm
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
575 576 577 578 579
      if (use_cvm_op) {
        g_mat.rightCols(fea_dim - 2) *= batch_size;
      } else {
        g_mat.rightCols(fea_dim) *= batch_size;
      }
580 581
    }

Z
zhaocaibei123 已提交
582 583 584
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
585
    output_len = 0;
Z
zhaocaibei123 已提交
586 587 588 589 590 591 592 593 594 595

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
        for (int j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
          if (use_cvm_op) {
            push_values.emplace_back(fea_dim + 1);
            push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
            float* data = push_values.back().data() + 1;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          } else {
            push_values.emplace_back(fea_dim + 3);
            // slot show clk grad... consistent with CtrCommonPushValue defined
            // in
            // ctr_accessor.h
            push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
            push_values.back()[1] =
                (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
            push_values.back()[2] =
                (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
            float* data = push_values.back().data() + 3;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          }
          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
        if (use_cvm_op) {
          push_values.emplace_back(fea_dim + 1);
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
          float* data = push_values.back().data() + 1;
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
        } else {
Z
zhaocaibei123 已提交
630 631 632 633 634 635 636 637 638
          push_values.emplace_back(fea_dim + 3);
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
          push_values.back()[1] =
              (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          push_values.back()[2] =
              (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
          float* data = push_values.back().data() + 3;
639
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
Z
zhaocaibei123 已提交
640 641 642 643
        }
        ++input_idx;
      }
    }
644
    CHECK(output_len == g_tensor->numel());
Z
zhaocaibei123 已提交
645 646 647 648 649 650 651 652
  }

  std::vector<float*> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

653 654 655 656 657 658 659 660 661 662 663 664 665
  // ps client push sparse
  // construct request context
  RequestContext req_context;
  req_context.value_type = Sparse;
  req_context.training_mode = Async;
  req_context.table = table_id;
  req_context.push_context.push_values = (const float**)push_g_vec.data();
  req_context.push_context.keys = push_keys.data();
  req_context.num = push_keys.size();
  auto status = worker_ptr_->Push(req_context);
  // auto status = worker_ptr_->push_sparse(table_id, push_keys.data(),
  //                                        (const float**)push_g_vec.data(),
  //                                        push_keys.size());
Z
zhaocaibei123 已提交
666 667 668
}

void FleetWrapper::LoadModel(const std::string& path, const int mode) {
669
  auto ret = worker_ptr_->load(path, std::to_string(mode));
T
tangwei12 已提交
670 671 672 673 674 675 676 677
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
  }
}

void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
678
  auto ret = worker_ptr_->load(table_id, path, std::to_string(mode));
T
tangwei12 已提交
679 680 681 682 683 684 685 686
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
}

void FleetWrapper::SaveModel(const std::string& path, const int mode) {
687
  auto ret = worker_ptr_->save(path, std::to_string(mode));
T
tangwei12 已提交
688 689 690 691 692 693 694 695 696
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
  }
}

void FleetWrapper::SaveModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
697
  auto ret = worker_ptr_->save(table_id, path, std::to_string(mode));
T
tangwei12 已提交
698 699 700 701 702 703 704
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

705 706
void FleetWrapper::RecvAndSaveTable(const uint64_t table_id,
                                    const std::string& path) {
707
  auto ret = worker_ptr_->recv_and_save_table(table_id, path);
708 709 710 711 712 713
  if (ret != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

T
tangwei12 已提交
714
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
715
  auto ret = worker_ptr_->print_table_stat(table_id);
T
tangwei12 已提交
716 717 718 719 720 721 722
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
}

723
void FleetWrapper::ShrinkSparseTable(int table_id, int threshold) {
724
  auto ret = worker_ptr_->shrink(table_id, std::to_string(threshold));
T
tangwei12 已提交
725
  ret.wait();
726 727 728 729
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "shrink sparse table stat failed";
  }
T
tangwei12 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

void FleetWrapper::ClearModel() {
  auto ret = pserver_ptr_->_worker_ptr->clear();
  ret.wait();
}

void FleetWrapper::ClearOneTable(const uint64_t table_id) {
  auto ret = pserver_ptr_->_worker_ptr->clear(table_id);
  ret.wait();
}

void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
                                    float decay, int emb_dim) {
  std::vector<paddle::distributed::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
750
      VLOG(3) << "prepare shrink dense batch_sum";
T
tangwei12 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pserver_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    // PADDLE_THORW(platform::errors::Fatal(
    //    "push shrink dense param failed, status is [%d].", status));
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

void FleetWrapper::ClientFlush() {
790 791 792 793 794
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "worker_ptr null, do nothing";
    return;
  }
  auto ret = worker_ptr_->flush();
T
tangwei12 已提交
795
  ret.wait();
796 797 798 799
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "Client Flush failed";
  }
T
tangwei12 已提交
800 801 802 803
}

int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
804 805
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "FleetWrapper::Client is null";
Z
zhaocaibei123 已提交
806 807
    return -1;
  } else {
808
    return worker_ptr_->registe_client2client_msg_handler(msg_type, handler);
Z
zhaocaibei123 已提交
809
  }
T
tangwei12 已提交
810 811 812 813
}

std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
814
  return worker_ptr_->send_client2client_msg(msg_type, to_client_id, msg);
T
tangwei12 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
}

std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;

    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

size_t FleetWrapper::GetAbsoluteSum(size_t start, size_t end, size_t level,
                                    const framework::LoD& lod) {
  if (level >= lod.size() - 1) {
    return end - start;
  }
  size_t ret = 0;
  for (size_t i = start; i < end - 1; ++i) {
    size_t pos1 = lod[level][i];
    size_t pos2 = lod[level][i + 1];
    ret += GetAbsoluteSum(pos1, pos2, level + 1, lod);
  }
  return ret;
}

}  // end namespace distributed
}  // end namespace paddle