math.cu 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/kernels/cuda/math.h"

17
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
C
Chen Weihang 已提交
18 19 20 21 22 23
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise.h"
#include "paddle/pten/kernels/hybird/cuda/reduce/reduce.h"
#include "paddle/pten/kernels/hybird/eigen/scale.h"
#include "paddle/pten/kernels/hybird/eigen/sign.h"
#include "paddle/pten/kernels/hybird/general/elementwise_functor.h"
#include "paddle/pten/kernels/hybird/general/reduce_impl.h"
24 25 26 27 28 29 30 31 32

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

33
#include "paddle/fluid/platform/complex.h"
34 35
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
36
#include "paddle/pten/api/lib/utils/tensor_utils.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"

namespace pten {

/**
 * Util Functors
 */

template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n)
      : n_inv(static_cast<T>(1.0 / n)) {}

  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};

/**
 * Kernels
 */

template <typename T>
void Sign(const CUDAContext& dev_ctx, const DenseTensor& x, DenseTensor* out) {
  eigen::Sign<CUDAContext, T>(dev_ctx, x, out);
}

template <typename T>
67 68 69 70 71 72 73 74 75 76
void Mean(const CUDAContext& dev_ctx,
          const DenseTensor& x,
          const std::vector<int64_t>& dims,
          bool keep_dim,
          bool reduce_all,
          DataType in_dtype,
          DataType out_dtype,
          DenseTensor* out) {
  pten::Reduce<T, paddle::operators::CustomMean>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
77 78 79 80 81
}

template <typename T>
void Scale(const CUDAContext& dev_ctx,
           const DenseTensor& x,
C
Chen Weihang 已提交
82
           const Scalar& scale,
83 84 85
           float bias,
           bool bias_after_scale,
           DenseTensor* out) {
C
Chen Weihang 已提交
86 87
  eigen::Scale<CUDAContext, T>(
      dev_ctx, x, scale.to<float>(), bias, bias_after_scale, out);
88 89
}

Y
YuanRisheng 已提交
90 91 92 93 94 95 96 97
// Create the definition of ElementwiseAdd
DEFINE_CUDA_ELEMENTWISE_OP(Add)
// Create the definition of ElementwiseSub
DEFINE_CUDA_ELEMENTWISE_OP(Sub)
// Create the definition of ElementwiseMul
DEFINE_CUDA_ELEMENTWISE_OP(Mul)
// Create the definition of ElementwiseDiv
DEFINE_CUDA_ELEMENTWISE_OP(Div)
98

99 100 101 102 103 104 105 106 107 108 109 110 111
template <typename T>
void Sum(const CUDAContext& dev_ctx,
         const DenseTensor& x,
         const std::vector<int64_t>& dims,
         bool keep_dim,
         bool reduce_all,
         DataType in_dtype,
         DataType out_dtype,
         DenseTensor* out) {
  pten::Reduce<T, paddle::operators::CustomSum>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

112 113 114
}  // namespace pten

using float16 = paddle::platform::float16;
115 116 117
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

118 119 120
PT_REGISTER_KERNEL(sign, CUDA, ANY, pten::Sign, float, double, float16) {}
PT_REGISTER_KERNEL(mean, CUDA, ANY, pten::Mean, float, double, bool) {}
PT_REGISTER_KERNEL(scale,
121 122 123 124 125 126 127 128 129 130 131
                   CUDA,
                   ANY,
                   pten::Scale,
                   float,
                   double,
                   float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
132
PT_REGISTER_KERNEL(add,
133 134 135 136 137 138 139 140 141 142
                   CUDA,
                   ANY,
                   pten::ElementwiseAdd,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
143
PT_REGISTER_KERNEL(subtract,
144 145 146 147 148 149 150 151 152 153
                   CUDA,
                   ANY,
                   pten::ElementwiseSub,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
154
PT_REGISTER_KERNEL(divide,
155 156 157 158 159 160 161 162 163 164
                   CUDA,
                   ANY,
                   pten::ElementwiseDiv,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
165
PT_REGISTER_KERNEL(multiply,
Y
YuanRisheng 已提交
166 167 168 169 170 171 172 173 174 175 176
                   CUDA,
                   ANY,
                   pten::ElementwiseMul,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   float16,
                   complex64,
                   complex128) {}
177
PT_REGISTER_KERNEL(sum,
178 179 180 181 182 183 184 185 186 187 188 189 190
                   CUDA,
                   ANY,
                   pten::Sum,
                   bool,
                   float,
                   double,
                   float16,
                   int,
                   int64_t,
                   complex64,
                   complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}