test_CompareSparse.cpp 7.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <paddle/utils/PythonUtil.h>

#include "paddle/trainer/Trainer.h"

#include <gtest/gtest.h>
#include <paddle/pserver/ParameterServer2.h>

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

static const string& configFile1 =
26
    "trainer/tests/sample_trainer_config_qb_rnn.conf";
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

P_DECLARE_bool(use_gpu);
P_DECLARE_string(config);
P_DECLARE_int32(gpu_id);
P_DECLARE_int32(seed);
P_DECLARE_int32(num_passes);
P_DECLARE_int32(saving_period);

P_DECLARE_int32(num_gradient_servers);
P_DECLARE_int32(port);
P_DECLARE_bool(local);
P_DECLARE_bool(use_old_updater);
P_DECLARE_bool(parallel_nn);
P_DECLARE_string(config_args);
41 42 43
P_DEFINE_double(max_diff_ratio,
                0.0f,
                "max diff ratio allowed for parameters value");
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56

int gNumDevices = 0;

std::vector<ParameterPtr> trainerOnePassTest(const string& configFile,
                                             bool sparseUpdate,
                                             int trainerCount = 1,
                                             bool useGpu = false) {
  FLAGS_use_gpu = useGpu;
  FLAGS_config = configFile;
  FLAGS_trainer_count = trainerCount;
  FLAGS_config_args = sparseUpdate ? "sparse_update=1" : "sparse_update=0";

  LOG(INFO) << " useGpu=" << useGpu << " trainerCount=" << trainerCount
57
            << " configFile=" << configFile << " sparseUpdate=" << sparseUpdate;
Z
zhangjinchao01 已提交
58 59
  srand(FLAGS_seed);
  *ThreadLocalRand::getSeed() = FLAGS_seed;
60
  ThreadLocalRandomEngine::get().seed(FLAGS_seed);
Z
zhangjinchao01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  if (useGpu) {
    CHECK_LE(trainerCount, gNumDevices);
  }

  std::vector<std::shared_ptr<ParameterServer2>> pservers;
  if (!FLAGS_local) {
    int numPorts = FLAGS_ports_num + FLAGS_ports_num_for_sparse;
    pservers.resize(numPorts);

    for (int i = 0; i < numPorts; ++i) {
      pservers[i].reset(new ParameterServer2(std::string(), FLAGS_port + i));
      pservers[i]->init();
      pservers[i]->start();
    }
  }

  Trainer trainer;
  trainer.init(TrainerConfigHelper::createFromFlagConfig());
  trainer.train();
  return trainer.getGradientMachine()->getParameters();
}

std::vector<ParameterPtr>& getDenseParameters() {
  static std::vector<ParameterPtr> denseParameters;
  if (denseParameters.empty()) {
    // use dense training as base
    FLAGS_local = true;
    denseParameters = trainerOnePassTest(configFile1, false);
  }

  return denseParameters;
}

94 95 96 97 98 99
void checkBuffer(real* A,
                 const char* desA,
                 real* B,
                 const char* desB,
                 size_t len,
                 double maxDiffRatio) {
Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107
  double maxDiff = 0;
  double maxValue = 0;
  for (size_t i = 0; i < len; ++i) {
    double diff = fabs(A[i] - B[i]);
    maxValue = std::max<double>(maxValue, std::max(fabs(A[i]), fabs(B[i])));
    maxDiff = std::max(maxDiff, diff);
  }
  EXPECT_LE(maxDiff / maxValue, maxDiffRatio);
108 109
  LOG(INFO) << " maxDiff=" << maxDiff << " maxValue=" << maxValue
            << " maxDiff/maxValue=" << maxDiff / maxValue << "\n\n";
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
}

void compareValue(const vector<ParameterPtr>& parametersA,
                  const vector<ParameterPtr>& parametersB,
                  double maxDiffRatio = 0.0) {
  LOG(INFO) << "\n\n--------------------------------"
            << " Check Gradient Machine Parameters:"
            << " -------------------------------------\n";
  for (size_t i = 0; i < parametersA.size(); ++i) {
    ParameterPtr parameterA, parameterB;
    parameterA = parametersA[i];
    parameterB = parametersB[i];

    CpuVector paraA(parameterA->getSize());
    CpuVector paraB(parameterB->getSize());
    paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
    paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));

    LOG(INFO) << "\n\n----------- PARAMETER_VALUE:  " << parameterA->getName()
              << " ; size : " << paraA.getSize() << " ------------";
130 131 132 133 134 135
    checkBuffer(paraA.getData(),
                "para_A",
                paraB.getData(),
                "para_B",
                paraA.getSize(),
                maxDiffRatio);
Z
zhangjinchao01 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }
}

TEST(compareSparse, cpu) {
  FLAGS_local = 1;  // disable remote sparse update in parameter config
  std::vector<ParameterPtr> parameters = trainerOnePassTest(configFile1, true);
  compareValue(getDenseParameters(), parameters);
}

TEST(compareSparse, remote_cpu) {
  FLAGS_local = 0;  // will enable remote sparse update
  FLAGS_ports_num_for_sparse = 5;
  std::vector<ParameterPtr> parameters = trainerOnePassTest(configFile1, true);
  compareValue(getDenseParameters(), parameters);
}

TEST(compareSparse, cpu10_local_vs_remote) {
  FLAGS_local = 1;  // disable remote sparse update in parameter config
  std::vector<ParameterPtr> localParameters =
L
liaogang 已提交
155
      trainerOnePassTest(configFile1, true, 2);
Z
zhangjinchao01 已提交
156 157 158 159

  FLAGS_local = 0;  // will enable remote sparse update
  FLAGS_ports_num_for_sparse = 5;
  std::vector<ParameterPtr> remoteParameters =
L
liaogang 已提交
160
      trainerOnePassTest(configFile1, true, 2);
Z
zhangjinchao01 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

  compareValue(localParameters, remoteParameters);
}

TEST(compareSparse, multiGradientMachine) {
  int numGpu;
#ifdef PADDLE_TYPE_DOUBLE
  double eps = 1e-8;
#else
  double eps = 1e-4;
#endif
  numGpu = hl_get_device_count();
  for (bool local : {false, true}) {
    FLAGS_local = local;
    FLAGS_ports_num_for_sparse = 5;
    for (bool useGpu : {false, true}) {
#ifdef PADDLE_ONLY_CPU
      if (useGpu) continue;
#endif
      FLAGS_parallel_nn = useGpu;
181
      LOG(INFO) << " local=" << local << " useGpu=" << useGpu;
L
liaogang 已提交
182
      int trainerCount = useGpu ? numGpu : 2;
Z
zhangjinchao01 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      std::vector<ParameterPtr> parameters =
          trainerOnePassTest(configFile1, true, trainerCount, useGpu);
      compareValue(getDenseParameters(), parameters, eps);
    }
  }
  FLAGS_parallel_nn = false;
}

TEST(compareSparse, NeuralNetwork) {
#ifdef PADDLE_TYPE_DOUBLE
  double eps = 1e-8;
#else
  double eps = 1e-4;
#endif
  for (bool local : {false, true}) {
    FLAGS_local = local;
    FLAGS_ports_num_for_sparse = 5;
    for (bool useGpu : {false, true}) {
#ifdef PADDLE_ONLY_CPU
      if (useGpu) continue;
#endif
      FLAGS_parallel_nn = useGpu;
205
      LOG(INFO) << " local=" << local << " useGpu=" << useGpu;
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      int trainerCount = 1;
      std::vector<ParameterPtr> parameters =
          trainerOnePassTest(configFile1, true, trainerCount, useGpu);
      compareValue(getDenseParameters(), parameters, useGpu ? eps : 0);
    }
  }
  FLAGS_parallel_nn = false;
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  initPython(argc, argv);

  gNumDevices = hl_get_device_count();
  FLAGS_num_passes = 1;          // train one pass
  FLAGS_saving_period = 100000;  // do not save parameter

  return RUN_ALL_TESTS();
}