Argument.cpp 21.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Argument.h"
16
#include "paddle/math/SparseMatrix.h"
Z
zhangjinchao01 已提交
17 18 19 20

#include <algorithm>

namespace paddle {
21 22 23
static void resizeAndCopy(MatrixPtr& dest,
                          const MatrixPtr& src,
                          bool useGpu,
Z
zhangjinchao01 已提交
24 25
                          hl_stream_t stream) {
  if (src) {
26 27 28 29 30 31
    if (!dest) {
      dest = src->clone(0, 0, useGpu);
    } else {
      CHECK_EQ(dest->useGpu(), useGpu);
      dest->resize(src->getHeight(), src->getWidth());
    }
Z
zhangjinchao01 已提交
32 33 34 35 36 37
    dest->copyFrom(*src, stream);
  } else {
    dest.reset();
  }
}

38 39 40
static void resizeAndCopy(IVectorPtr& dest,
                          const IVectorPtr& src,
                          bool useGpu,
Z
zhangjinchao01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
                          hl_stream_t stream) {
  if (src) {
    IVector::resizeOrCreate(dest, src->getSize(), useGpu);
    dest->copyFrom(*src, stream);
  } else {
    dest.reset();
  }
}

static void resizeAndCopy(ICpuGpuVectorPtr& dest,
                          const ICpuGpuVectorPtr& src,
                          bool useGpu,
                          hl_stream_t stream) {
  if (src) {
    ICpuGpuVector::resizeOrCreate(dest, src->getSize(), useGpu);
    dest->copyFrom(*src, stream);
  } else {
    dest.reset();
  }
}

62 63 64 65 66
static void resizeAndCopy(MatrixPtr& dest,
                          const MatrixPtr& src,
                          int32_t startRow,
                          int32_t copySize,
                          bool useGpu,
Z
zhangjinchao01 已提交
67 68 69 70 71
                          hl_stream_t stream = HPPL_STREAM_DEFAULT) {
  if (src) {
    CHECK_LE((size_t)startRow + copySize, src->getHeight());
    int height = copySize;
    int width = src->getWidth();
72 73 74 75 76 77
    if (!dest) {
      dest = src->clone(height, width, useGpu);
    } else {
      CHECK_EQ(dest->useGpu(), useGpu);
      dest->resize(height, width);
    }
Z
zhangjinchao01 已提交
78
    MatrixPtr submat = src->subMatrix(startRow, copySize);
79 80 81 82 83 84 85 86 87
    if (dynamic_cast<GpuSparseMatrix*>(dest.get())) {
      // copy a subMatrix of CpuSparseMatrix to GpuSparseMatrix.
      // First copy it to CPU, and then copy it to the GPU.
      MatrixPtr tmp = src->clone(height, width, false);
      tmp->copyFrom(*submat, stream);
      dest->copyFrom(*tmp, stream);
    } else {
      dest->copyFrom(*submat, stream);
    }
Z
zhangjinchao01 已提交
88 89 90 91 92
  } else {
    dest.reset();
  }
}

93 94 95 96 97
static void resizeAndCopy(IVectorPtr& dest,
                          const IVectorPtr& src,
                          int32_t startPos,
                          int32_t copySize,
                          bool useGpu,
Z
zhangjinchao01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                          hl_stream_t stream = HPPL_STREAM_DEFAULT) {
  if (src) {
    CHECK_LE((size_t)startPos + copySize, src->getSize());

    int height = copySize;
    IVector::resizeOrCreate(dest, height, useGpu);
    dest->copyFrom(src->getData() + startPos, height, stream);
  } else {
    dest.reset();
  }
}

static void resizeAndCopy(ICpuGpuVectorPtr& dest,
                          const ICpuGpuVectorPtr& src,
                          int32_t startPos,
                          int32_t copySize,
                          bool useGpu,
                          hl_stream_t stream = HPPL_STREAM_DEFAULT) {
  if (src) {
    CHECK_LE((size_t)startPos + copySize, src->getSize());

    ICpuGpuVector::resizeOrCreate(dest, copySize, useGpu);
    dest->copyFrom(*src, startPos, copySize, useGpu, stream);
  } else {
    dest.reset();
  }
}

static void resizeAndCopy(UserDefinedVectorPtr& dest,
127 128
                          const UserDefinedVectorPtr& src,
                          bool useGpu,
Z
zhangjinchao01 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                          hl_stream_t stream) {
  if (src) {
    CHECK(!useGpu) << "not implemented";
    size_t height = src->size();
    if (!dest) {
      dest = std::make_shared<std::vector<void*>>(height);
    } else {
      dest->resize(height);
    }
    std::copy_n(src->begin(), height, dest->begin());
  } else {
    dest.reset();
  }
}

static void resizeAndCopy(UserDefinedVectorPtr& dest,
145 146 147 148
                          const UserDefinedVectorPtr& src,
                          int32_t startPos,
                          int32_t copySize,
                          bool useGpu,
Z
zhangjinchao01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
                          hl_stream_t stream = HPPL_STREAM_DEFAULT) {
  if (src) {
    CHECK(!useGpu) << "not implemented";
    CHECK_LE((size_t)startPos + copySize, src->size());

    size_t height = copySize;
    if (!dest) {
      dest = std::make_shared<std::vector<void*>>(height);
    } else {
      dest->resize(height);
    }
    std::copy_n(src->begin() + startPos, height, dest->begin());
  } else {
    dest.reset();
  }
}

166 167 168
static void resizeAndCopy(SVectorPtr& dest,
                          const SVectorPtr& src,
                          bool useGpu,
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182
                          hl_stream_t stream) {
  if (src) {
    size_t height = src->size();
    if (!dest) {
      dest = std::make_shared<std::vector<std::string>>(height);
    } else {
      dest->resize(height);
    }
    std::copy_n(src->begin(), height, dest->begin());
  } else {
    dest.reset();
  }
}

183 184 185 186 187
static void resizeAndCopy(SVectorPtr& dest,
                          const SVectorPtr& src,
                          int32_t startPos,
                          int32_t copySize,
                          bool useGpu,
Z
zhangjinchao01 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
                          hl_stream_t stream = HPPL_STREAM_DEFAULT) {
  if (src) {
    CHECK_LE((size_t)startPos + copySize, src->size());
    size_t height = copySize;
    if (!dest) {
      dest = std::make_shared<std::vector<std::string>>(height);
    } else {
      dest->resize(height);
    }
    std::copy_n(src->begin() + startPos, height, dest->begin());
  } else {
    dest.reset();
  }
}

203
void Argument::resizeAndCopyFrom(const Argument& src, bool useGpu) {
204 205
  resizeAndCopyFrom(src, useGpu, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);
206 207
}

208 209
void Argument::resizeAndCopyFrom(const Argument& src,
                                 bool useGpu,
Z
zhangjinchao01 已提交
210 211 212 213 214 215
                                 hl_stream_t stream) {
  dataId = src.dataId;
  resizeAndCopy(value, src.value, useGpu, stream);
  resizeAndCopy(grad, src.grad, useGpu, stream);
  resizeAndCopy(in, src.in, useGpu, stream);
  resizeAndCopy(ids, src.ids, useGpu, stream);
216 217 218 219
  resizeAndCopy(sequenceStartPositions,
                src.sequenceStartPositions,
                false /* useGpu */,
                stream);
Z
zhangjinchao01 已提交
220 221
  if (src.hasSubseq()) {
    resizeAndCopy(subSequenceStartPositions,
222 223 224
                  src.subSequenceStartPositions,
                  false /* useGpu */,
                  stream);
Z
zhangjinchao01 已提交
225 226 227
  }
  resizeAndCopy(udp, src.udp, useGpu, stream);
  resizeAndCopy(strs, src.strs, useGpu, stream);
L
Luo Tao 已提交
228 229
  frameWidth = src.frameWidth;
  frameHeight = src.frameHeight;
Z
zhangjinchao01 已提交
230 231
}

232 233 234 235 236 237 238 239
int32_t Argument::resizeAndCopyFrom(const Argument& src,
                                    int32_t startSeq,
                                    int32_t copySize,
                                    bool useGpu) {
  int32_t size =
      resizeAndCopyFrom(src, startSeq, copySize, useGpu, HPPL_STREAM_DEFAULT);
  hl_stream_synchronize(HPPL_STREAM_DEFAULT);
  return size;
240 241
}

242 243 244 245
int32_t Argument::resizeAndCopyFrom(const Argument& src,
                                    int32_t startSeq,
                                    int32_t copySize,
                                    bool useGpu,
Z
zhangjinchao01 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                                    hl_stream_t stream) {
  dataId = src.dataId;

  if (!src.sequenceStartPositions) {
    // non-sequence input, copy samples directly
    int32_t startRow = startSeq;
    resizeAndCopy(in, src.in, startRow, copySize, useGpu, stream);
    resizeAndCopy(value, src.value, startRow, copySize, useGpu, stream);
    resizeAndCopy(grad, src.grad, startRow, copySize, useGpu, stream);
    resizeAndCopy(ids, src.ids, startRow, copySize, useGpu, stream);
    resizeAndCopy(udp, src.udp, startRow, copySize, useGpu, stream);
    resizeAndCopy(strs, src.strs, startRow, copySize, useGpu, stream);
    return copySize;
  } else {
    // sequence input
    const int* sequence = src.sequenceStartPositions->getData(false);
    int32_t startRow = sequence[startSeq];           // sample start from here
    int32_t endRow = sequence[startSeq + copySize];  // sample end
    int32_t copyFeatureSize = endRow - startRow;     // num of samples
    resizeAndCopy(in, src.in, startRow, copyFeatureSize, useGpu, stream);
    resizeAndCopy(value, src.value, startRow, copyFeatureSize, useGpu, stream);
    resizeAndCopy(grad, src.grad, startRow, copyFeatureSize, useGpu, stream);
    resizeAndCopy(ids, src.ids, startRow, copyFeatureSize, useGpu, stream);
    resizeAndCopy(udp, src.udp, startRow, copySize, useGpu, stream);
270 271 272 273 274 275
    resizeAndCopy(sequenceStartPositions,
                  src.sequenceStartPositions,
                  startSeq,
                  copySize + 1,
                  false,
                  stream);
Z
zhangjinchao01 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    // modify new sequenceStartPositions
    int* destSequences = sequenceStartPositions->getMutableData(false);
    for (int i = 0; i < copySize + 1; i++) {
      destSequences[i] -= startRow;
    }
    CHECK_EQ(destSequences[0], 0);
    CHECK_EQ(destSequences[copySize], copyFeatureSize);
    if (src.hasSubseq()) {
      // sequence has sub-sequence
      int* subSequence = src.subSequenceStartPositions->getMutableData(false);
      int32_t subStartSeq = 0;
      int32_t subEndSeq = 0;
      int numSubSequences = src.getNumSubSequences();
      for (int i = 0; i < numSubSequences + 1; i++) {
        if (subSequence[i] == startRow) {
          subStartSeq = i;
        } else if (subSequence[i] == endRow) {
          subEndSeq = i;
          break;
        }
      }
      int32_t copySubSize = subEndSeq - subStartSeq;
      resizeAndCopy(subSequenceStartPositions,
299 300 301 302 303
                    src.subSequenceStartPositions,
                    subStartSeq,
                    copySubSize + 1,
                    false,
                    stream);
Z
zhangjinchao01 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
      // modify new subSequenceStartPositions
      int* destSubSequences = subSequenceStartPositions->getMutableData(false);
      for (int i = 0; i < copySubSize + 1; i++) {
        destSubSequences[i] -= startRow;
      }
      CHECK_EQ(destSubSequences[0], 0);
      CHECK_EQ(destSubSequences[copySubSize], copyFeatureSize);
    }
    resizeAndCopy(strs, src.strs, startRow, copySize, useGpu, stream);
    return copyFeatureSize;
  }
}

void Argument::concat(const std::vector<Argument>& args,
                      const std::vector<int>& selectRows,
319 320 321 322
                      const std::vector<int>& seqStartPos,
                      bool useGpu,
                      hl_stream_t stream,
                      PassType passType) {
323
  CHECK(!subSequenceStartPositions)
324
      << "undefined behavior for subsequence positions";
325

Z
zhangjinchao01 已提交
326
  size_t batchSize = selectRows.size();
327 328 329 330 331
  auto copyArg = [batchSize, stream](MatrixPtr& dst,
                                     MatrixPtr src,
                                     int startRow,
                                     int pos,
                                     int size,
Z
zhangjinchao01 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
                                     bool useGpu) {
    if (!src) {
      dst.reset();
      return;
    }
    size_t width = src->getWidth();
    if (!dst) {
      dst = src->clone(batchSize, width, useGpu);
    } else {
      dst->resize(batchSize, width);
    }

    MatrixPtr tmpMatrix = dst->subMatrix(startRow, size);
    tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream);
  };

348 349 350 351 352
  auto copyIds = [batchSize, stream](IVectorPtr& dst,
                                     const IVectorPtr& src,
                                     int startRow,
                                     int pos,
                                     int size,
Z
zhangjinchao01 已提交
353 354 355 356 357 358 359 360 361
                                     bool useGpu) {
    if (!src) {
      dst.reset();
      return;
    }
    IVector::resizeOrCreate(dst, batchSize, useGpu);
    dst->subVec(startRow, size)->copyFrom(*src->subVec(pos, size), stream);
  };

362 363 364 365 366
  auto copyStrs = [batchSize, stream](SVectorPtr& dst,
                                      const SVectorPtr& src,
                                      int startRow,
                                      int pos,
                                      int size,
Z
zhangjinchao01 已提交
367 368 369 370 371 372 373 374 375 376
                                      bool useGpu) {
    if (!src) {
      dst.reset();
      return;
    }
    if (!dst) {
      dst = std::make_shared<std::vector<std::string>>(batchSize);
    } else {
      dst->resize(batchSize);
    }
377 378
    std::copy(
        src->begin() + pos, src->begin() + pos + size, dst->begin() + startRow);
Z
zhangjinchao01 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  };

  dataId = args[0].dataId;
  CHECK_NE(seqStartPos.size(), 0UL);
  size_t sampleNum = seqStartPos.size() - 1;
  for (size_t i = 0; i < sampleNum; ++i) {
    int startPos = seqStartPos[i];
    int endPos = seqStartPos[i + 1];
    CHECK_GE(args.size(), static_cast<size_t>(endPos - startPos));
    for (int j = startPos; j < endPos; ++j) {
      const Argument& arg = args[j - startPos];
      CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have"
                                   << " same dataId";
      const int copySize = 1;
      const int rowIdx = selectRows[j];
      copyArg(in, arg.in, j, rowIdx, copySize, useGpu);
      copyArg(value, arg.value, j, rowIdx, copySize, useGpu);
      if (passType != PASS_TEST) {
        copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu);
      }
      copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu);
      copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu);
    }
  }
403 404 405 406
  ICpuGpuVector::resizeOrCreate(
      sequenceStartPositions, seqStartPos.size(), useGpu);
  sequenceStartPositions->copyFrom(
      seqStartPos.data(), seqStartPos.size(), useGpu);
Z
zhangjinchao01 已提交
407 408
}

409 410 411 412
void Argument::concat(const std::vector<Argument>& args,
                      bool useGpu,
                      hl_stream_t stream,
                      PassType passType) {
Z
zhangjinchao01 已提交
413 414
  int32_t batchSize = 0;
  int64_t numSequences = 0;
415
  int64_t numSubSequences = 0;
Z
zhangjinchao01 已提交
416 417 418
  for (auto& arg : args) {
    batchSize += arg.getBatchSize();
    numSequences += arg.getNumSequences();
419
    numSubSequences += arg.getNumSubSequences();
Z
zhangjinchao01 已提交
420 421
  }

422 423
  auto copyArg = [batchSize, stream](
      MatrixPtr& dst, MatrixPtr src, int startRow, bool useGpu) {
Z
zhangjinchao01 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    if (!src) {
      dst.reset();
      return;
    }
    size_t width = src->getWidth();
    if (!dst) {
      dst = src->clone(batchSize, width, useGpu);
    } else {
      dst->resize(batchSize, width);
    }

    MatrixPtr tmpMatrix = dst->subMatrix(startRow, src->getHeight());
    tmpMatrix->copyFrom(*src, stream);
  };

439 440
  auto copyIds = [batchSize, stream](
      IVectorPtr& dst, const IVectorPtr& src, int startRow, bool useGpu) {
Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448
    if (!src) {
      dst.reset();
      return;
    }
    IVector::resizeOrCreate(dst, batchSize, useGpu);
    dst->subVec(startRow, src->getSize())->copyFrom(*src, stream);
  };

449 450
  auto copyStrs = [batchSize, stream](
      SVectorPtr& dst, const SVectorPtr& src, int startRow, bool useGpu) {
Z
zhangjinchao01 已提交
451 452 453 454 455 456 457 458 459 460 461 462
    if (!src) {
      dst.reset();
      return;
    }
    if (!dst) {
      dst = std::make_shared<std::vector<std::string>>(batchSize);
    } else {
      dst->resize(batchSize);
    }
    std::copy(src->begin(), src->end(), dst->begin() + startRow);
  };

463 464 465 466 467 468 469 470 471 472 473 474
  auto copySequencePos = [](ICpuGpuVectorPtr& dstSeq,
                            const ICpuGpuVectorPtr& srcSeq,
                            int dstNumSequences,
                            int srcNumSequences,
                            int& startSequences,
                            int startRow) {
    if (srcSeq) {
      ICpuGpuVector::resizeOrCreate(dstSeq, dstNumSequences + 1, false);
      const int* src = srcSeq->getData(false);
      int* dest = dstSeq->getMutableData(false);
      for (int i = 0; i < srcNumSequences + 1; ++i) {
        dest[i + startSequences] = src[i] + startRow;
475
      }
476 477 478 479
      startSequences += srcNumSequences;
    } else {
      dstSeq.reset();
    }
480 481
  };

Z
zhangjinchao01 已提交
482 483
  int startRow = 0;
  int startSequences = 0;
484
  int startSubSequences = 0;
Z
zhangjinchao01 已提交
485 486 487 488 489 490 491 492
  dataId = args[0].dataId;
  for (auto& arg : args) {
    CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have"
                                 << " same dataId";
    copyArg(in, arg.in, startRow, useGpu);
    copyArg(value, arg.value, startRow, useGpu);
    if (passType != PASS_TEST) copyArg(grad, arg.grad, startRow, useGpu);
    copyIds(ids, arg.ids, startRow, useGpu);
493 494 495 496 497 498 499 500 501 502 503 504
    copySequencePos(sequenceStartPositions,
                    arg.sequenceStartPositions,
                    numSequences,
                    arg.getNumSequences(),
                    startSequences,
                    startRow);
    copySequencePos(subSequenceStartPositions,
                    arg.subSequenceStartPositions,
                    numSubSequences,
                    arg.getNumSubSequences(),
                    startSubSequences,
                    startRow);
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    copyStrs(strs, arg.strs, startRow, useGpu);
    startRow += arg.getBatchSize();
  }
}

void Argument::splitByDataId(const std::vector<Argument>& argus,
                             std::vector<std::vector<Argument>>* arguGroups) {
  arguGroups->clear();
  int lastDataId = -1;
  for (const auto& argu : argus) {
    if (argu.dataId == -1) {
      // is -1, then create a new group
      arguGroups->emplace_back();
      lastDataId = -1;
    } else if (argu.dataId != lastDataId) {
      // not -1, also not equal to last Argument, then create a new group
      arguGroups->emplace_back();
      lastDataId = argu.dataId;
    } else {
      // not -1, and equal to last Argument, do nothing
    }
    arguGroups->back().push_back(argu);
  }
}

530
void Argument::getSeqInfo(std::vector<SeqInfo>* seqInfo) const {
Z
zhangjinchao01 已提交
531
  const int* starts = sequenceStartPositions->getData(false);
532 533
  const int* subStarts =
      hasSubseq() ? subSequenceStartPositions->getData(false) : nullptr;
534 535 536 537 538 539 540 541 542 543 544 545
  size_t numSequences = getNumSequences();
  seqInfo->reserve(numSequences);
  int subSeqEnd = 0;
  for (size_t i = 0; i < numSequences; ++i) {
    SeqInfo info;
    info.seqStart = starts[i];
    info.subLevelLength = starts[i + 1] - starts[i];
    info.seqId = i;
    if (hasSubseq()) {
      info.subSeqStart = subSeqEnd;
      while (subStarts[subSeqEnd] < starts[i + 1]) {
        ++subSeqEnd;
Z
zhangjinchao01 已提交
546
      }
547 548 549 550
      info.topLevelLength = subSeqEnd - info.subSeqStart;
    } else {
      info.topLevelLength = info.subLevelLength;
      info.subSeqStart = 0;  // not used
Z
zhangjinchao01 已提交
551
    }
552
    seqInfo->push_back(info);
Z
zhangjinchao01 已提交
553
  }
554 555
  std::sort(seqInfo->begin(),
            seqInfo->end(),
556 557 558
            [](const SeqInfo& a, const SeqInfo& b) {
              return a.topLevelLength > b.topLevelLength;
            });
Z
zhangjinchao01 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
}

void Argument::checkSubset() const {
  if (getNumSequences() > getNumSubSequences()) {
    LOG(FATAL) << "numSubSequences is less than numSequences ("
               << getNumSubSequences() << " vs. " << getNumSequences() << ")";
  }
  const int* start = sequenceStartPositions->getData(false);
  const int* subStart = subSequenceStartPositions->getData(false);
  int seqId = 0;
  int subSeqId = 0;
  while (seqId < getNumSequences() && subSeqId < getNumSubSequences()) {
    if (start[seqId] > subStart[subSeqId]) {
      ++subSeqId;
    } else if (start[seqId] == subStart[subSeqId]) {
      ++subSeqId;
      ++seqId;
    } else {
      LOG(FATAL) << "seqStartPositions is not subset of subSeqStartPositions";
    }
  }
  if (seqId < getNumSequences()) {
    LOG(FATAL) << "seqStartPositions is not subset of subSeqStartPositions";
  }
}

void Argument::degradeSequence(const Argument& input, bool useGpu) {
  CHECK_EQ(input.hasSubseq(), 1UL);
  size_t numSequences = input.getNumSequences();
  size_t numSubSequences = input.getNumSubSequences();
589 590
  ICpuGpuVector::resizeOrCreate(
      sequenceStartPositions, numSequences + 1, false);
Z
zhangjinchao01 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603
  int* tgtBuf = sequenceStartPositions->getMutableData(false);
  const int* starts = input.sequenceStartPositions->getData(false);
  const int* subStarts = input.subSequenceStartPositions->getData(false);
  int seqId = 0;
  for (size_t subSeqId = 0; subSeqId < numSubSequences; ++subSeqId) {
    if (subStarts[subSeqId] == starts[seqId]) {
      tgtBuf[seqId] = subSeqId;
      seqId++;
    }
  }
  tgtBuf[numSequences] = numSubSequences;
}

604 605 606 607 608 609 610 611 612
void Argument::subArgFrom(const Argument& input,
                          size_t offset,
                          size_t height,
                          size_t width,
                          bool useGpu,
                          bool trans,
                          bool seqFlag,
                          size_t seqStart,
                          size_t seqSize) {
613
  if (input.value) {
614 615
    value = Matrix::create(
        input.value->getData() + offset * width, height, width, trans, useGpu);
616 617 618 619
  }
  if (input.ids) {
    ids = IVector::create(input.ids->getData() + offset, height, useGpu);
  }
Z
zhangjinchao01 已提交
620
  if (input.grad) {
621 622
    grad = Matrix::create(
        input.grad->getData() + offset * width, height, width, trans, useGpu);
Z
zhangjinchao01 已提交
623 624 625
  }
  if (seqFlag) {
    sequenceStartPositions = std::make_shared<ICpuGpuVector>(
626
        *(input.sequenceStartPositions), seqStart, seqSize);
Z
zhangjinchao01 已提交
627 628 629 630
  }
}

}  // namespace paddle