cross_entropy_op.h 3.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
C
caoying03 已提交
16
#include "paddle/framework/eigen.h"
D
dongzhihong 已提交
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/platform/hostdevice.h"
Q
Qiao Longfei 已提交
19 20 21 22

namespace paddle {
namespace operators {

D
dongzhihong 已提交
23
using Tensor = framework::Tensor;
C
caoying03 已提交
24 25 26
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
D
dongzhihong 已提交
27

28
template <typename T>
C
caoying03 已提交
29 30 31 32 33
struct TolerableValue {
  HOSTDEVICE T operator()(const T& x) const {
    PADDLE_ASSERT(std::is_floating_point<T>::value);
    const T kApproInf = 1e20;

C
caoying03 已提交
34 35
    if (x == INFINITY) return kApproInf;
    if (x == -INFINITY) return -kApproInf;
C
caoying03 已提交
36
    return x;
37
  }
C
caoying03 已提交
38
};
Y
Yan Chunwei 已提交
39

40
template <typename T>
41
class CrossEntropyOpKernel : public framework::OpKernel {
42
 public:
D
dongzhihong 已提交
43
  void Compute(const framework::ExecutionContext& ctx) const override {
44 45
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
C
caoying03 已提交
46 47 48
    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* labels = ctx.Input<Tensor>("Label");
    Tensor* y = ctx.Output<Tensor>("Y");
49 50
    y->mutable_data<T>(ctx.GetPlace());

C
caoying03 已提交
51
    const int batch_size = x->dims()[0];
52
    if (ctx.Attr<bool>("soft_label")) {
C
caoying03 已提交
53 54 55 56 57
      auto prob = EigenMatrix<T>::From(*x);
      auto lbl_mat = EigenMatrix<T>::From(*labels);
      auto loss = EigenMatrix<T>::From(*y);

      loss.device(ctx.GetEigenDevice<platform::CPUPlace>()) =
C
caoying03 已提交
58
          -((lbl_mat * prob.log().unaryExpr(TolerableValue<T>()))
C
caoying03 已提交
59 60
                .sum(Eigen::DSizes<int, 1>(1))
                .reshape(Eigen::DSizes<int, 2>(batch_size, 1)));
61
    } else {
C
caoying03 已提交
62 63 64 65 66 67
      const int class_num = x->dims()[1];

      const T* x_data = x->data<T>();
      T* y_data = y->data<T>();

      const int* label_data = labels->data<int>();
68 69
      for (int i = 0; i < batch_size; ++i) {
        int index = i * class_num + label_data[i];
C
caoying03 已提交
70
        y_data[i] = -TolerableValue<T>()(std::log(x_data[index]));
71
      }
Y
Yan Chunwei 已提交
72 73 74 75
    }
  }
};

76
template <typename T>
77
class CrossEntropyGradientOpKernel : public framework::OpKernel {
Y
Yan Chunwei 已提交
78
 public:
D
dongzhihong 已提交
79
  void Compute(const framework::ExecutionContext& ctx) const override {
80 81 82
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

83 84 85 86
    auto x = ctx.Input<Tensor>("X");
    auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("Label");
Y
Yan Chunwei 已提交
87

88 89 90
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* dy_data = dy->data<T>();
    auto* x_data = x->data<T>();
Y
Yan Chunwei 已提交
91

92 93
    int batch_size = x->dims()[0];
    int class_num = x->dims()[1];
Y
Yan Chunwei 已提交
94

95
    // TODO(qingqing): make zero setting an common function.
96
    if (ctx.Attr<bool>("soft_label")) {
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
      auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
      int index = 0;
      for (int i = 0; i < batch_size; ++i) {
        for (int j = 0; j < class_num; ++j) {
          dx_data[index] = -label_data[index] * dy_data[i] / x_data[index];
          index++;
        }
      }
    } else {
      auto* label_data = label->data<int>();
      memset(dx_data, 0, sizeof(T) * batch_size * class_num);
      for (int i = 0; i < batch_size; ++i) {
        PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
        int index = i * class_num + label_data[i];
        dx_data[index] = -dy_data[i] / x_data[index];
      }
Q
Qiao Longfei 已提交
113 114 115 116 117 118
    }
  }
};

}  // namespace operators
}  // namespace paddle