cross_entropy_op.cu 6.7 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/op_registry.h"
16
#include "paddle/operators/cross_entropy_op.h"
17
#include "paddle/platform/assert.h"
18
#include "paddle/platform/hostdevice.h"
19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
                                   const int N, const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
C
caoying03 已提交
31
    Y[i] = -TolerableValue<T>()(log(X[i * D + label[i]]));
32 33 34
  }
}

C
caoying03 已提交
35 36 37 38 39 40 41 42 43 44 45
template <typename T>
__device__ __forceinline__ T sum_single_warp(T val) {
  val += __shfl_down(val, 16);
  val += __shfl_down(val, 8);
  val += __shfl_down(val, 4);
  val += __shfl_down(val, 2);
  val += __shfl_down(val, 1);
  return val;
}

template <typename T>
C
caoying03 已提交
46 47
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int class_num) {
C
caoying03 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int tid = threadIdx.x;
  extern __shared__ T d_sum[];
  d_sum[tid] = 0;

  int cur_idx = tid;
  int next_idx = blockIdx.x * class_num + tid;
  while (cur_idx < class_num) {
    d_sum[tid] += TolerableValue<T>()(std::log(X[next_idx])) * label[next_idx];
    next_idx += blockDim.x;
    cur_idx += blockDim.x;
  }
  __syncthreads();

  for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) {
    if (tid < stride) d_sum[tid] += d_sum[tid + stride];
    __syncthreads();
  }

  T val = d_sum[tid];
  val = sum_single_warp<T>(val);
  if (tid == 0) Y[blockIdx.x] = -val;
}

// TODO(qingqing): make zero setting a common function.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T>
__global__ void zero(T* X, const int N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    X[i] = 0.0;
  }
}

template <typename T>
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
                                           const int* label, const int N,
                                           const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    int idx = i * D + label[i];
    dX[idx] = -dY[i] / X[idx];
  }
}

template <typename T>
94 95 96
__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
                                               const T* label, const int N,
                                               const int D) {
C
caoying03 已提交
97
  int ids = blockIdx.x * blockDim.x + threadIdx.x;
C
caoying03 已提交
98
  if (ids < N * D) {
C
caoying03 已提交
99
    int row_ids = ids / D;
C
caoying03 已提交
100
    dX[ids] = -label[ids] * dY[row_ids] / X[ids];
101 102 103 104 105
  }
}

template <typename T>
class CrossEntropyOpCUDAKernel : public framework::OpKernel {
106 107 108
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
C
caoying03 已提交
109
                   "This kernel only runs on GPU device.");
110

111 112 113 114 115 116 117
    auto x = ctx.Input<Tensor>("X");
    auto y = ctx.Output<Tensor>("Y");
    auto label = ctx.Input<Tensor>("Label");

    auto* x_data = x->data<T>();
    y->mutable_data<T>(ctx.GetPlace());
    auto* y_data = y->data<T>();
118

C
caoying03 已提交
119 120 121
    int batch_size = x->dims()[0];
    int class_num = x->dims()[1];

122
    if (ctx.Attr<bool>("soft_label")) {
123
      auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
C
caoying03 已提交
124 125 126 127 128 129 130
      int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num)));

      SoftCrossEntropyKernel<
          T><<<batch_size, block, block * sizeof(T),
               reinterpret_cast<const platform::CUDADeviceContext&>(
                   ctx.device_context())
                   .stream()>>>(y_data, x_data, label_data, class_num);
131 132
    } else {
      auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
C
caoying03 已提交
133
      int block = 512;
C
caoying03 已提交
134 135 136 137 138 139
      int grid = (batch_size + block - 1) / block;
      CrossEntropyKernel<T><<<
          grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              ctx.device_context())
                              .stream()>>>(y_data, x_data, label_data,
                                           batch_size, class_num);
140
    }
141 142 143 144
  }
};

template <typename T>
145
class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
146 147 148
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
C
caoying03 已提交
149
                   "This kernel only runs on GPU device.");
150

151 152 153 154
    auto x = ctx.Input<Tensor>("X");
    auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("Label");
155

156 157 158
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* dy_data = dy->data<T>();
    auto* x_data = x->data<T>();
159

160 161
    int n = x->dims()[0];
    int d = x->dims()[1];
C
caoying03 已提交
162

163
    int block = 512;
164
    int grid = (n * d + block - 1) / block;
C
caoying03 已提交
165 166 167 168
    zero<T><<<grid, block, 0,
              reinterpret_cast<const platform::CUDADeviceContext&>(
                  ctx.device_context())
                  .stream()>>>(dx_data, n * d);
169
    if (ctx.Attr<bool>("soft_label")) {
170
      auto* label_data = label->data<T>();
C
caoying03 已提交
171 172 173 174 175
      SoftCrossEntropyGradientKernel<T><<<
          grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              ctx.device_context())
                              .stream()>>>(dx_data, dy_data, x_data, label_data,
                                           n, d);
176 177
    } else {
      auto* label_data = label->data<int>();
C
caoying03 已提交
178 179 180 181 182
      CrossEntropyGradientKernel<T><<<
          grid, block, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              ctx.device_context())
                              .stream()>>>(dx_data, dy_data, x_data, label_data,
                                           n, d);
183
    }
184 185 186 187 188
  }
};

}  // namespace operators
}  // namespace paddle
Q
Qiao Longfei 已提交
189

D
dongzhihong 已提交
190
namespace ops = paddle::operators;
191 192 193
REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpCUDAKernel<float>);