elementwise_mul_mkldnn_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18

T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
P
peizhilin 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
21

22
#ifdef PADDLE_WITH_XBYAK
23 24
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
25
#endif
26

27 28 29 30
namespace paddle {
namespace operators {

using framework::DataLayout;
31
using mkldnn::memory;
32
using platform::StringToMKLDNNFormat;
33 34

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
35 36
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
37
    auto format_as_string = ctx.Attr<std::string>(attribute);
38
    auto format = StringToMKLDNNFormat(&format_as_string);
39 40 41 42 43 44
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

45 46 47
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
48
                         const mkldnn::engine& engine, bool isFourDim) {
49 50 51 52 53 54
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
55 56 57 58 59 60
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
61 62 63 64
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
81
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
82

83 84
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
85

P
peizhilin 已提交
86
    const bool is_avx512_enabled = platform::MayIUse(platform::avx512f);
87 88 89
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
90 91
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
92 93
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
94

95 96 97 98 99
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
100

101 102 103 104
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
105

106 107
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
108

109 110
        constexpr int simd_width = 16;
        int C = c / simd_width;
111

T
tensor-tang 已提交
112
        auto multiply = jit::Get<jit::kNCHW16CMulNC, jit::NCHW16CMulNCTuples<T>,
T
tensor-tang 已提交
113
                                 platform::CPUPlace>(0);
114
#pragma omp parallel for collapse(2)
115 116 117
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
118
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
119

120 121
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
122
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
123

T
tensor-tang 已提交
124
            multiply(ptr_x, ptr_y, ptr_z, h, w);
125 126 127
          }
        }
      }
128 129 130

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
131 132
    } else {
      // Fallback to naive version:
133
      const bool are_inputs_in_same_format = x->format() == y->format();
134
      const bool is_x_nchw = x->format() == memory::format::nchw;
135
      const bool is_x_nc = x->format() == memory::format::nc;
136
      const bool is_y_nchw = y->format() == memory::format::nchw;
137
      const bool is_y_nc = y->format() == memory::format::nc;
138
      if (!are_inputs_in_same_format) {
139 140 141
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
142
        if (!(is_x_nchw || is_x_nc))
143
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
144 145
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
146
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
147
                          y->dims().size() == 4);
148 149
      }

150 151 152 153 154 155 156 157
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
174 175 176 177 178 179 180 181 182 183 184 185
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)