lstm_op.cc 11.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstm_op.h"
16
#include <string>
D
dangqingqing 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
26 27
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
33 34
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
35
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
36
                   "Output(Cell) of LSTM should not be null.");
37 38 39 40
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
41

D
dangqingqing 已提交
42 43
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
44 45 46 47 48 49 50 51 52 53 54 55

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
56
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
57 58 59 60 61 62 63 64 65 66 67
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
68

D
dangqingqing 已提交
69 70 71 72
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
73 74

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
75 76 77 78 79 80 81
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
82
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
83 84
                        frame_size);
    }
85

D
dangqingqing 已提交
86 87 88 89 90
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
91 92 93
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
94 95

 protected:
96
  framework::OpKernelType GetExpectedKernelType(
97
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
98 99 100
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
101
  }
D
dangqingqing 已提交
102 103 104 105
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
106
  LSTMOpMaker(OpProto* proto, OpAttrChecker* op_checker)
D
dangqingqing 已提交
107 108 109 110
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
111
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
112 113 114 115
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
K
kexinzhao 已提交
116
             "batch size and D is the hidden size.")
117
        .AsDispensable();
D
dangqingqing 已提交
118 119 120
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
Y
Yibing Liu 已提交
121
             "batch size. `H0` and `C0` can be NULL but only at the same time.")
122
        .AsDispensable();
D
dangqingqing 已提交
123 124
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
125 126
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
127 128 129
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
130 131
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
132 133
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
134
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
135
             " - The shape is (1 x 7D). "
136
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
137
    AddOutput("Hidden",
D
dangqingqing 已提交
138 139
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
140
    AddOutput("Cell",
D
dangqingqing 已提交
141 142
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
143 144
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
145
              "and output gate after the nonlinear computation. This "
K
kexinzhao 已提交
146
              "LoDTensor has the same shape as the reorganized input, which "
D
dangqingqing 已提交
147
              "is also be called batch input. The LoD size is 2. The first "
148 149 150
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
151
        .AsIntermediate();
D
dangqingqing 已提交
152
    AddOutput("BatchCellPreAct",
K
kexinzhao 已提交
153
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
D
dangqingqing 已提交
154 155
              "in the backward.")
        .AsIntermediate();
156
    AddAttr<bool>("use_peepholes",
D
dangqingqing 已提交
157 158 159
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
160
    AddAttr<bool>("is_reverse",
D
dangqingqing 已提交
161 162
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
163
        .SetDefault(false);
D
dangqingqing 已提交
164
    AddAttr<std::string>(
165
        "gate_activation",
Y
Yu Yang 已提交
166
        "(string, default: sigmoid)"
D
dangqingqing 已提交
167
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
168
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
169 170
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
171
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
172
                         "(string, default: tanh)"
D
dangqingqing 已提交
173
                         "The activation for cell output, `tanh` by defalut.")
D
dangqingqing 已提交
174 175
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
176
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
177
                         "(string, default: tanh)"
D
dangqingqing 已提交
178
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
179
                         "`tanh` by default.")
D
dangqingqing 已提交
180 181
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
K
kexinzhao 已提交
182 183
    AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.
D
dangqingqing 已提交
184

D
dangqingqing 已提交
185
The defalut implementation is diagonal/peephole connection
K
kexinzhao 已提交
186
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
D
dangqingqing 已提交
187

K
kexinzhao 已提交
188 189
$$
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \\
D
dangqingqing 已提交
190

K
kexinzhao 已提交
191
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \\
D
dangqingqing 已提交
192

K
kexinzhao 已提交
193
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) \\
D
dangqingqing 已提交
194

K
kexinzhao 已提交
195
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\
D
dangqingqing 已提交
196

K
kexinzhao 已提交
197
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
D
dangqingqing 已提交
198

K
kexinzhao 已提交
199 200
h_t = o_t \odot act_h(c_t)
$$
D
dangqingqing 已提交
201

D
dangqingqing 已提交
202 203
where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
K
kexinzhao 已提交
204 205
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
D
dangqingqing 已提交
206
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
K
kexinzhao 已提交
207
is the non-line activations, such as logistic sigmoid function, and
D
dangqingqing 已提交
208
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
K
kexinzhao 已提交
209
and cell activation vectors, respectively, all of which have the same size as
D
dangqingqing 已提交
210
the cell output activation vector $h$.
D
dangqingqing 已提交
211

D
dangqingqing 已提交
212
The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
K
kexinzhao 已提交
213
are the cell input and cell output activation functions and `tanh` is usually
D
dangqingqing 已提交
214
used for them. $\tilde{c_t}$ is also called candidate hidden state,
D
dangqingqing 已提交
215 216
which is computed based on the current input and the previous hidden state.

D
dangqingqing 已提交
217 218 219
Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
D
dangqingqing 已提交
220

D
dangqingqing 已提交
221 222
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
D
dangqingqing 已提交
223
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
224 225 226 227 228 229 230 231 232

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

233
  void InferShape(framework::InferShapeContext* ctx) const override {
234 235 236 237 238 239
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
240 241 242 243
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
244 245 246 247 248 249

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

D
dangqingqing 已提交
250 251 252 253 254 255 256 257 258 259 260
    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
D
dangqingqing 已提交
261
  }
262 263

 protected:
264
  framework::OpKernelType GetExpectedKernelType(
265
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
266 267 268
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
        ctx.device_context());
269
  }
D
dangqingqing 已提交
270 271 272 273 274 275
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
276
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
277 278
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp);
Q
QI JUN 已提交
279 280 281 282 283 284
REGISTER_OP_CPU_KERNEL(
    lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstm_grad, ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, double>);