tensor_utils.cc 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::Tensor& src) {
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
                             pten::TransToPtenDataLayout(src.layout())};
  auto shared_storage =
      pten::make_intrusive<SharedStorage>(src.Holder(), src.offset());
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::LoDTensor& src) {
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
                             pten::TransToPtenDataLayout(src.layout())};
  SetLoD(&meta.lod, src.lod());
  auto shared_storage =
      pten::make_intrusive<SharedStorage>(src.Holder(), src.offset());
53

54 55 56 57
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::Tensor& tensor,
    const pten::TensorArgDef& arg_def) {
  pten::DenseTensorMeta meta{arg_def.dtype,
                             tensor.dims(),
                             pten::TransToPtenDataLayout(tensor.layout())};

  if (tensor.IsInitialized() &&
      tensor.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage =
        pten::make_intrusive<SharedStorage>(tensor.Holder(), tensor.offset());
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::LoDTensor& tensor,
    const pten::TensorArgDef& arg_def) {
  pten::DenseTensorMeta meta{arg_def.dtype,
                             tensor.dims(),
                             pten::TransToPtenDataLayout(tensor.layout()),
                             pten::TransToPtenLoD(tensor.lod())};

  if (tensor.IsInitialized() &&
      tensor.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage =
        pten::make_intrusive<SharedStorage>(tensor.Holder(), tensor.offset());
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
pten::Scalar MakePtenScalar(const paddle::framework::LoDTensor& src) {
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArray(const paddle::framework::LoDTensor& src) {
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    const framework::Variable& variable, const pten::TensorArgDef& arg_def) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);

  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor);
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor.value());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
  return {};
}

std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    framework::Variable* variable, const pten::TensorArgDef& arg_def) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
302
    return MakePtenDenseTensor(*tensor, arg_def);
303 304 305 306
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
307
    return MakePtenDenseTensor(tensor->value(), arg_def);
308 309 310 311 312 313 314 315 316
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
  return {};
}

void MovesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
317 318 319 320 321 322 323 324
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move storage."));
325
  dst->Resize(src->dims());
326
  dst->set_type(pten::TransToProtoVarType(src->dtype()));
327 328 329
  auto storage = src->release();
  std::shared_ptr<paddle::memory::allocation::Allocation> holder(
      new TensorStorage(std::move(storage)));
330
  dst->ResetHolderWithType(holder, pten::TransToProtoVarType(src->dtype()));
331 332 333
}

void MovesStorage(pten::DenseTensor* src, paddle::framework::LoDTensor* dst) {
334 335 336 337 338 339 340 341
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination LoDTensor is nullptr when move storage."));
342 343 344 345
  SetLoD(dst->mutable_lod(), src->lod());
  MovesStorage(src, static_cast<paddle::framework::Tensor*>(dst));
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
void MovesSharedStorage(pten::DenseTensor* src,
                        paddle::framework::Tensor* dst) {
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
  dst->Resize(src->dims());
  auto* storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));
  dst->ResetHolderWithType(storage->GetAllocation(),
                           pten::TransToProtoVarType(src->dtype()));
}

void MovesSharedStorage(pten::DenseTensor* src,
                        paddle::framework::LoDTensor* dst) {
  MovesSharedStorage(src, static_cast<paddle::framework::Tensor*>(dst));
  SetLoD(dst->mutable_lod(), src->lod());
}

369
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
370
                           const pten::TensorArgDef& arg_def,
371 372 373 374
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
  // Since the type of DenseTensorMeta is const, const_cast must be used
375
  const_cast<DataType&>(meta->dtype) = arg_def.dtype;
376 377 378
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataLayout&>(meta->layout) =
      pten::TransToPtenDataLayout(src.layout());
379

380 381 382 383 384 385
  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));
386 387 388 389

  if (src.IsInitialized()) {
    shared_storage->ResetAllocation(src.Holder(), src.offset());
  }
390 391
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
void ReMakePtenDenseTensor(const paddle::framework::LoDTensor& src,
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataType&>(meta->dtype) = pten::TransToPtenDataType(src.type());
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataLayout&>(meta->layout) =
      pten::TransToPtenDataLayout(src.layout());

  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));

  if (src.IsInitialized()) {
    shared_storage->ResetAllocation(src.Holder(), src.offset());
  }
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataType&>(meta->dtype) = pten::TransToPtenDataType(src.type());
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataLayout&>(meta->layout) =
      pten::TransToPtenDataLayout(src.layout());

  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));

  if (src.IsInitialized()) {
    shared_storage->ResetAllocation(src.Holder(), src.offset());
  }
}

436
void ReMakePtenDenseTensor(const paddle::framework::LoDTensor& src,
437
                           const pten::TensorArgDef& arg_def,
438 439 440 441
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
  // Since the type of DenseTensorMeta is const, const_cast must be used
442
  const_cast<DataType&>(meta->dtype) = arg_def.dtype;
443 444 445 446
  // Since the type of DenseTensorMeta is const, const_cast must be used
  const_cast<DataLayout&>(meta->layout) =
      pten::TransToPtenDataLayout(src.layout());
  SetLoD(&(meta->lod), src.lod());
447

448 449 450 451 452 453
  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));
454 455 456 457 458 459 460
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
    shared_storage->ResetAllocation(src.Holder(), src.offset());
  } else {
    shared_storage->ResetAllocationPlace(
        pten::TransToFluidPlace(arg_def.backend));
  }
461 462 463 464 465 466 467 468
}

void ReMakePtenDenseTensorFromVar(const framework::Variable& variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
Y
YuanRisheng 已提交
469 470 471 472 473 474
    // check input dtype before ReMakePtenDenseTensor
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
475 476 477
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
478
      ReMakePtenDenseTensor(tmp_tensor, arg_def, dst);
479
    } else {
480
      ReMakePtenDenseTensor(tensor, arg_def, dst);
481 482 483 484 485
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
Y
YuanRisheng 已提交
486 487 488 489 490
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.value().type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
491 492 493 494
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
495
      ReMakePtenDenseTensor(tmp_tensor, arg_def, dst);
496
    } else {
497
      ReMakePtenDenseTensor(tensor.value(), arg_def, dst);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

void ReMakePtenDenseTensorFromVar(framework::Variable* variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
513
    ReMakePtenDenseTensor(*tensor, arg_def, dst);
514 515 516 517
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
518
    ReMakePtenDenseTensor(tensor->value(), arg_def, dst);
519 520 521 522 523 524 525
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
    tensor->Resize(src->dims());
    SetLoD(tensor->mutable_lod(), src->lod());

    // here dynamic_cast is slow
    auto* storage = static_cast<SharedStorage*>(
        pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
         !IsSameAllocation(tensor->Holder(), storage->GetAllocation()))) {
      tensor->ResetHolderWithType(std::move(storage->GetAllocation()), dtype);
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

  } else if (variable->IsType<framework::SelectedRows>()) {
    auto* tensor = variable->GetMutable<framework::SelectedRows>();
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
      auto storage = dynamic_cast<SharedStorage*>(
          pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));
      tensor->mutable_value()->ResetHolderWithType(
          std::move(storage->GetAllocation()), dtype);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

574 575
}  // namespace experimental
}  // namespace paddle